Cho tam giác ABC cân tại A .M à trung điểm BC ,lấy D và E lần lượt thuộc AB và AC sao cho góc MDB bằng với góc CME
a/ Chứng minh BM2 = BD.CE
b/chứng minh Tam giác MDE đồng dạng với tam giác BDM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a.chứng minh cho tam giác BDM đồng dạng với tam giác CEM (g.g)
=> BD/BM=EC/CM
mà BM=CM( vì M là trung điểm của BC)
=> BD/BM=EC/BM
=> BM2=BD*EC
a)chứng minh cho tam giác BDM đồng dạng với tam giác CEM (g.g)
=> BD/BM=EC/CM
mà BM=CM( vì M là trung điểm của BC)
=> BD/BM=EC/BM
=> BM2=BD x EC
a) Ta có : Góc MDB = góc CME (gt) ; Góc B = góc C (tam giác ABC cân tại A)
=> \(\Delta DBM~\Delta MCE\left(g.g\right)\) \(\Rightarrow\frac{BM}{CE}=\frac{BD}{MC}\) hay \(\frac{BM}{CE}=\frac{BD}{BM}\) ( M là trung điểm BC)
\(\Rightarrow BM^2=BD.CE\)
b) Ta có : Góc BMD = góc MEC (tam giác DBM và MCE đồng dạng)
Mà BME là góc ngoài tam giác MEC => góc BMD + góc DME = góc MEC + góc MCE = góc BMD + góc MCE
=> Góc DME = góc MCE = góc MBA (1)
Từ \(\Delta DBM~\Delta MCE\left(g.g\right)\) \(\Rightarrow\frac{DM}{ME}=\frac{BM}{CE}\) hay \(\frac{DM}{ME}=\frac{MC}{CE}\) (2)
Từ (1) và (2) suy ra \(\Delta DME~\Delta MCE\left(c.g.c\right)\) mà \(\Delta DBM~\Delta MCE\left(g.g\right)\) \(\Rightarrow\Delta DBM~\Delta DME\)
Vậy ta có điều phải chứng minh.