Cho tam giác ABC gọi I là giao điểm của các đường phân giác góc BAC và góc ABC kẻ các khoảng cách IM IN IP lần lượt đến các cạnh AB BC vầ AC chứng minh IM=IN=IP
Các bạn làm gấp giup minh với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét Δ AIB và Δ AIC có :
AI chung } =>Δ AIB = Δ AIC
AB = AC (gt) } (c.c.c)
IB = IC (I là trung điểm BC) }
=> ∠AIB = ∠AIC 92 góc tương ứng) } => ∠AIB = ∠AIC = 90°
Mà : ∠AIB + ∠AIC = 180° } => AI ⊥ BC
Vì I là trung điểm BC nên :
=> IB = IC = BC2BC2 = 6262 = 3 cm
ΔAIB vuông tại I , theo định lí Py-ta-go:
=> AI² = AB² - IB² = 5² - 3² = 25 - 9 = 16 => AI = 4 cm
b) Xét Δ vuông INA và Δ vuông IMA có :
AI chung } => Δ vuông INA = Δ vuông IMA
∠MAI = ∠NAI (2 góc tương ứng) } (c.h-g.n)
=> IM = IN (2canhj tương ứng)
Nếu ∠MAN = 120° , mà IM = IN => Δ IMN là Δ cân
đó
Xét ΔAMI vuông tại M và ΔAPI vuông tại P có
AI chung
\(\widehat{MAI}=\widehat{PAI}\)
Do đó: ΔAMI=ΔAPI
Suy ra: IM=IP(1)
Xét ΔINC vuông tại N và ΔIPC vuông tại P có
IC chung
\(\widehat{NCI}=\widehat{PCI}\)
Do đó: ΔINC=ΔIPC
Suy ra: IN=IP(2)
Từ (1) và (2) suy ra IM=IN=IP