Tính \(\frac{1}{10000}+\frac{13}{10000}+\frac{25}{10000}+....+\frac{97}{10000}+\frac{109}{10000}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
1+13+25+37+.....+ 121+133/ 1000
Dãy số 1+13+25+.....+133 có số số hạng là:
(133 -1) : 12+1=.......( bạn tự tính nhé)
Tổng của dãy số trên là:
( 1+133)x số số hạng: 2=.....
Vậy 804/ 1000( bn rút gọn đi nhé)
Mk ko biết mk kết quả tính đúng ko nhưng cáh làm thì chắc là đúng nha
1/10000+13/10000+25/10000+...+97/10000+109/10000
=0,0001 + 0,0013 + 0,0025 + ....+0,0097 + 0,0109
ta thấy tổng trên là dãy số cách đều nhau 0,0012 đơn vị
dãy số trên có số số hạng là:
(0,0109 - 0,0001) : 0,0012 + 1=10(số)
tổng trên bằng:
(0,0109 + 0,0001) x 10 : 2=0,055
vậy tổng trên =0,055
Ta có:
\(2000x=\frac{2000x}{2000x};5000y=\frac{5000y}{5000y};10000x=\frac{10000z}{10000z}\Rightarrow x=y=z\)
=> 2000x = 5000y = 10000z \(=\frac{2000x}{2000x}=\frac{5000y}{5000y}=\frac{10000z}{10000z}\)
=> \(\frac{2000x}{10000}=\frac{5000y}{10000}=\frac{10000z}{10000}\)
chắc vậy
a)\(\dfrac{1}{10000}+\dfrac{13}{10000}+\dfrac{25}{10000}+...+\dfrac{97}{10000}+\dfrac{109}{10000}\)
\(=\dfrac{1+13+25+...+97+109}{10000}\)
\(=\dfrac{\left(1+109\right)\left[109-1\right]:12+1}{20000}\)
\(=\dfrac{110.10}{20000}=\dfrac{11}{200}\)
b)\(\dfrac{4}{3}\times2019\times0,75\)
=\(\dfrac{4}{3}\times\dfrac{3}{4}\times2019\)
\(=2019\)
c)\(4\times5\times0,25\times\dfrac{1}{5}\times\dfrac{1}{2}\times2\)
\(=\left(4\times\dfrac{1}{4}\right)\left(5\times\dfrac{1}{5}\right)\left(2\times\dfrac{1}{2}\right)\)
\(=1\times1\times1=1\)
Ý d) đặt tính kiểu gì thế ?
a) \(A=\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}=\left(-1\right)^{3n+1}\)
b) \(B=\left(10000-1^2\right)\left(10000-2^2\right).........\left(10000-1000^2\right)\)
\(=\left(10000-1^2\right)\left(10000-2^2\right)......\left(10000-100^2\right)....\left(10000-1000^2\right)\)
\(=\left(10000-1^2\right)\left(10000-2^2\right).....\left(10000-10000\right).....\left(10000-1000^2\right)=0\)
c) \(C=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)..........\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right).....\left(\frac{1}{125}-\frac{1}{5^3}\right)......\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)........\left(\frac{1}{125}-\frac{1}{125}\right).....\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)
d) \(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-10^3\right)}\)
\(=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-1000\right)}=1999^0=1\)
Mình mới tái xuất giang hồ hoc24 sau 1 tháng nên mong mọi người like ủng hộ mình nhé!!!
Ta có :
\(\frac{1}{10000}+\frac{13}{10000}+\frac{25}{10000}+...+\frac{97}{10000}+\frac{109}{10000}\)
\(=\frac{1+13+25+...+97+109}{10000}\)
Số số hạng ở tử số là : (109 - 1) : 12 + 1 = 10 (số hạng)
\(=\frac{\left(1+109\right)\cdot10:2}{10000}=\frac{550}{10000}=\frac{11}{200}\)
Nếu bạn chưa hiểu thì bạn hỏi lại mình nhé!
\(\frac{1}{10000}+\frac{13}{10000}+\frac{25}{10000}+...+\frac{109}{10000}=\frac{1}{10000}\left(1+13+25+..+109\right)\)
\(\frac{1}{10000}.550=\frac{11}{200}\)