Cho hình lăng trụ ABC.A'B'C', đều có cạnh bằng a, AA' = a và đỉnh cách đều A, B, C. Gọi lần lượt là trung điểm của cạnh BC và A'B. Tính theo a thể tích khối lăng trụ ABC.A'B'C' và khoảng cách từ C đến mặt phẳng (AMN).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Gọi M là trung điểm của BC thì BC ⊥ (A'AM)
Từ A kẻ AH ⊥ A'M,
Suy ra
Góc giữa đường thẳng A'B và mặt phẳng (ABC) bằng góc A ' M A ^
Theo giả thiết ta có A ' M A ^ = 60 0
Đặt AB = 2x
Từ giả thiết ta có
Do đó:
Vậy thể tích khối lăng trụ ABC.A'B'C' là V = 125 3 96 a 3
Phân tích phương án nhiễu.
Phương án B: Sai do HS tính đúng như trên nhưng nhớ nhầm công thức tính thể tích khối lăng trụ sang công thức tính thể tích khối chớp.
Cụ thể
Phương án C: Sai do HS giải như trên và tìm được nhưng lại tính sai diện tích tam giác ABC. Cụ thể
Do đó tính được
Phương án D: Sai do HS tính đúng như trên nhưng tính sai diện tích tam giác ABC. Cụ thể:
Do đó tính được V = 125 3 48 a 3
\(AA'\perp\left(ABC\right)\Rightarrow\widehat{A'BA}\) là góc giữa A'B với đáy
Suy ra : \(\widehat{A'BA}=60^o\Rightarrow AA'=AB.\tan\widehat{A'BA}=a\sqrt{3}\)
Do đó \(V_{ABC.A'B'C'}=AA'.S_{\Delta ABC}=\frac{3a^2}{4}\)
Gọi K là trung điểm cạnh BC, suy ra Tam giác MNK vuông tại K, có :
\(MK=\frac{AB}{2}=\frac{a}{2};NK=AA'=a\sqrt{3}\)
Do đó : \(MN=\sqrt{MK^2+NK^2}=\frac{a\sqrt{13}}{2}\)
Gọi H là trung điểm của AB, \(A'H\perp\left(ABC\right)\) và \(\widehat{A'CH}=60^0\)
Do đó \(A'H=CH.\tan\widehat{A'CH}=\frac{3a}{2}\)
Do đó thể tích khối lăng trụ là \(V_{ABC.A'B'C'}=\frac{3\sqrt{3}a^3}{8}\)
Gọi I là hình chiếu vuông góc của H lên AC; K là hình chiếu vuông góc của H lên A'I. Suy ra :
\(HK=d\left(H,\left(ACC'A'\right)\right)\)
Ta có :
\(HI=AH.\sin\widehat{IAH}=\frac{\sqrt{3}a}{4}\);
\(\frac{1}{HK^2}=\frac{1}{HI^2}+\frac{1}{HA'^2}=\frac{52}{9a^2}\)
=>\(HK=\frac{3\sqrt{13}a}{26}\)
Do đó \(d\left(B;\left(ACC'A'\right)\right)=2d\left(H;\left(ACC'A'\right)\right)=2HK=\frac{3\sqrt{13}a}{13}\)
Đáp án A
Gọi M là trung điểm của BC thì B C ⊥ A ' A M .
Từ A kẻ A H ⊥ A ' M , H ∈ A ' M . Khi đó A H ⊥ ( A ' B C ) .
Suy ra d A , A ' B C = A H = a 5 2 .
Góc giữa đường thẳng A ' B và mặt phẳng (ABC) bằng góc A ' M A ⏞ .
Theo giả thiết ta có A ' M A ⏞ = 60 °
Đặt AB = 2x thì A M = x 3 ; A ' A = 2 x 3 .
Suy ra A H = A ' A . A M A ' A 2 + A M 2 = 2 x 15 5
Từ giả thiết ta có 2 x 15 5 = a 5 2 ⇒ x = 5 a 15 12 Do đó
A A ' = 5 a 2 ; S A B C = 25 a 2 3 48
Vậy thể tích khối lăng trụ ABC.A'B'C' là V = 125 3 96 a 3 .
Chọn B.
Gọi M,G lần lượt là trung điểm của BC và trọng tâm G của tam giác ABC.
Do tam giác ABC đều cạnh a nên
Trong mặt phẳng (AA'M) kẻ MH ⊥ AA'. Khi đó:
Vậy MH là đoạn vuông góc chung của AA' và BC nên MH = a 3 4 .
Trong tam giác AA'G kẻ
Xét tam giác AA'G vuông tại G ta có:
Vậy thể tích của khối lăng trụ đã cho là
Đáp án B
Gọi M là trung điểm BC, kẻ đường cao AH trong Δ A ' A M . Khi đó AH là khoảng cách từ A tới A ' B C ⇒ A H = a 2 .
AM là đường cao trong tam giác đều ⇒ A M = a 3 2 , d t A B C = a 2 3 4
Ta có:
Đáp án B
Gọi M là trung điểm BC kẻ đường cao Ah trong Δ A ' A M . Khi đó AH là khoảng cách từ A tới A ' B C ⇒ A H = a 2 .
AM là đường cao trong tam giác đều ⇒ A M = a 3 2 , d t A B C = a 2 3 4
Ta có 1 A ' A 2 = 1 A H 2 − 1 A M 2 = 4 a 2 − 4 3 a 2 = 8 3 a 2 ⇒ A ' A = a 6 4
Vậy V A ' B ' C ' . A B C = A ' A . d t A B C = a 6 4 . a 2 3 4 = 3 a 3 2 16
M,N lần lượt là trung điểm BC,A'B