K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2016

x4-2x+2

= (x2)2-2x2+1+2x2-2x+1

=(x2-1)2+2(x2-x+1)

=(x2-1)2+2(x2-2.1/2x+1/4+1/4)

=(x2-1)2+2[(x-1/2)2+1/4]

vì (x2-1)2 lớn hơn hoặc = 0 với mọi x và 2[(x-1/2)2+1/4] lớn hơn hoặc = 0 với mọi x 

nên (x2-1)2+2[(x-1/2)2+1/4] dương hay x4-2x+2 dương

NM
13 tháng 8 2021

ta có \(A=2x^2-2xy+\frac{y^2}{2}+\frac{y^2}{2}-4y+8+7\)

\(=\frac{1}{2}\left[\left(4x^2-4xy+y^2\right)+\left(y^2-8y+18\right)\right]+7\)

\(=\frac{1}{2}\left[\left(2x-y\right)^2+\left(y-4\right)^2\right]+7\ge7\)

Vậy ta có A luôn dương

17 tháng 9 2021

a)\(A=x^2+x+1=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

b) \(B=2x^2+2x+1=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)

28 tháng 6 2016

Ta có: \(4x^2-28x+51=\left(2x\right)^2-2\cdot2x\cdot7+49+2\)

                                       \(=\left(2x-7\right)^2+2\)(*)

Vì \(\left(2x-7\right)^2\ge0\) với mọi x

=> (*)\(\ge1\)

 =>(*) luôn luôn dương với mọi x

 

28 tháng 6 2016

ta có : \(4x^2-28x+51=\left(2x\right)^2-2.2x.7+7^2+51=\left(2x-7\right)^2+51\)

vì \(\left(2x-7\right)^2\ge0\) với mọi x 

\(\Rightarrow\left(2x-7\right)^1+51>0\) với mọi x  (đpcm)

23 tháng 9 2021

\(E=x^2+2x+15=\left(x^2+2x+1\right)+14=\left(x+1\right)^2+14\ge14>0\forall x\)

23 tháng 9 2021

E=(x2+2x+1)+14=(x+1)2+14

ta có (x+1)2 >=0 với mọi x

suy ra E=(x2+2x+1)+14=(x+1)2+14 >0 với mọi biến x

31 tháng 8 2020

\(2x^2+2x+7=2x^2+2x+\frac{1}{2}+\frac{13}{2}\)

\(=2\left(x^2+x+\frac{1}{4}\right)+\frac{13}{2}=2.\left(x+\frac{1}{2}\right)^2+\frac{13}{2}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow2\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2.\left(x+\frac{1}{2}\right)^2+\frac{13}{2}\ge\frac{13}{2}\forall x\)

\(\Rightarrow2x^2+2x+7\ge\frac{13}{2}\forall x\)

hay biểu thức \(2x^2+2x+7\)luôn dương với mọi x ( đpcm )

31 tháng 8 2020

2x2 + 2x + 7

= 2( x2 + x + 1/4 ) + 13/2

= 2( x + 1/2 )2 + 13/2 ≥ 13/2 > 0 ∀ x ( đpcm )

22 tháng 10 2021

\(a,B=4x^2+20x+25-9+x^2+14=5x^2+20x+30\\ b,B=5\left(x^2+4x+4\right)+10\\ B=5\left(x+2\right)^2+10\ge10>0,\forall x\)

Do đó B luôn dương với mọi x

10 tháng 7 2017

A = x2 - x + 1

A = x2 - 2.x.\(\frac{1}{2}\)+\(\frac{1}{4}\) +\(\frac{3}{4}\)

A = \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

B = (x - 2)(x - 4) + 3

B = x2 - 4x - 2x + 8 + 3

B = x2 - 6x + 11

B = x2 - 2.3.x + 9 + 3

B = \(\left(x-3\right)^2+3>0\)

10 tháng 7 2017

C = 2x2 - 4xy + 4y2 + 2x + 5

C = (x2 - 4xy + 4y2) + x2 + 2x + 5

C = (x - 2y)2 + (x2 + 2x + 1) + 4

C = (x - 2y)2 + (x + 1)2 + 4

Xét biểu thức C thấy : 

Có 2 hạng tử không âm (vì là bình phương)

Vậy C > 0