K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2016

\(D=-3x\left(x+3\right)-7=-3x^2-9x-7=-3\left(x^2+2x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)-7\)

\(=-3\left[\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\right]-7=-3\left(x+\frac{3}{2}\right)^2+\frac{27}{4}-7=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\) < \(-\frac{1}{4}\)

Dấu "=" xảy ra <=> \(-3\left(x+\frac{3}{2}\right)^2=0< =>x=-\frac{3}{2}\)

Vậy maxD=-1/4 khi x=-3/2

 

3 tháng 7 2018

a,Ta có :\(A=x\left(x-6\right)=x^2-6x\)

                \(=x^2-6x+9-9\)

                \(=\left(x-3\right)^2-9\)

Vì: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow\)\(\left(x-3\right)^2-9\ge-9\forall x\)

Hay: \(A\ge-9\forall x\)

Dấu = xảy ra khi (x-3)^2=0 

                   <=>x=3

Vậy Min A= -9 tại x=3

b,Ta có: \(B=-3x\left(x+3\right)-7\)

                  \(=-3x^2-9x-7\)

                   \(=-3\left(x^2+3x+\frac{7}{3}\right)\)

                     \(=-3\left[\left(x^2+3x+\frac{9}{4}\right)+\frac{1}{12}\right]\)

                      \(=-3\left[\left(x+\frac{3}{2}\right)^2+\frac{1}{12}\right]\)

                        \(=-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\)

Vì: \(-3\left(x+\frac{3}{2}\right)^2\le0\forall x\)

\(\Rightarrow-3\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\le\frac{-1}{4}\forall x\)

Hay \(B\le\frac{-1}{4}\forall x\)

Dấu = xảy ra khi \(-3\left(x+\frac{3}{2}\right)^2=0\)

\(\Rightarrow x=\frac{-3}{2}\)

Vậy Max B=-1/4 tại x=-3/2

                 

3 tháng 7 2018

a)  \(A=x\left(x-6\right)=x^2-6x+9-9=\left(x-3\right)^2-9\ge-9\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=3\)

Vậy Min A = -9 khi x = 3

b)  \(B=-3x\left(x+3\right)-7=-3x^2-9x-7=-3\left(x^2+9x+20,25\right)+53,75\)

          \(=-3\left(x+4,5\right)^2+53,75\le53,75\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-4,5\)

Vậy Max B = 53,75 khi x = -4,5

`D(x)=2x^4+7x^2=0`

`-> x(2x^3+7x)=0`

`->`\(\left[{}\begin{matrix}x=0\\2x^3+7x=0\end{matrix}\right.\)

`->`\(\left[{}\begin{matrix}x=0\\x\left(2x^2+7\right)=0\end{matrix}\right.\)

`->`\(\left[{}\begin{matrix}x=0\\x=0\\2x^2+7=0\end{matrix}\right.\)

`->`\(\left[{}\begin{matrix}x=0\\2x^2=-7\text{ }\left(\text{k t/m}\right)\end{matrix}\right.\)

Vậy, nghiệm của đa thức là `x=0`

`E(x)=8x^4+x=0`

`-> x(8x^3+1)=0`

`->`\(\left[{}\begin{matrix}x=0\\8x^3+1=0\end{matrix}\right.\)

`->`\(\left[{}\begin{matrix}x=0\\8x^3=-1\end{matrix}\right.\)

`->`\(\left[{}\begin{matrix}x=0\\x^3=-\dfrac{1}{8}\end{matrix}\right.\)

`->`\(\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Vậy, nghiệm của đa thức là `x={0 ; -1/2}`

`F(x)=x(-2x+3)+2x^2-5=0`

`-> -2x^2+3x+2x^2-5=0`

`-> 3x-5=0`

`-> 3x=5`

`-> x=5/3`

Vậy, nghiệm của đa thức là `x=5/3`.

2 tháng 5 2023

cảm ơn cậu raastttttttttttttttttttttt nhiều

a: \(B\left(x\right)=-\left(x^2-3x+7\right)\)

\(=-\left(x^2-3x+\dfrac{9}{4}+\dfrac{19}{4}\right)\)

\(=-\left(x-\dfrac{3}{2}\right)^2-\dfrac{19}{4}\le-\dfrac{19}{4}\)

Dấu '=' xảy ra khi x=3/2

b: Ta có: \(C\left(x\right)=-x^2+7x-20\)

\(=-\left(x^2-7x+20\right)\)

\(=-\left(x^2-7x+\dfrac{49}{4}+\dfrac{31}{4}\right)\)

\(=-\left(x-\dfrac{7}{2}\right)^2-\dfrac{31}{4}\le-\dfrac{31}{4}\)

Dấu '=' xảy ra khi x=7/2

27 tháng 1 2021

a) A = x( 5 - 3x ) = -3x2 + 5x = -3( x2 - 5/3x + 25/36 ) + 25/12

= -3( x - 5/6 )2 + 25/12 ≤ +25/12 ∀ x

Dấu "=" xảy ra khi x = 5/6

Vậy MaxA = 25/12 <=> x = 5/6

27 tháng 1 2021

b) Từ x + y = 7 => x = 7 - y

Ta có : xy = ( 7 - y ).y = 7y - y2 = -( y2 - 7y + 49/4 ) + 49/4 = -( y - 7/2 )2 + 49/4 ≤ 49/4 ∀ y

Dấu "=" xảy ra <=> y = 7/2 => x = 7/2

Vậy Max(xy) = 49/4 <=> x = y = 7/2

( nếu cho x,y dương thì Cauchy nhanh gọn luôn :)) )

\(R=-2\left(x^2-\dfrac{1}{2}x-\dfrac{1}{2}\right)=-2\left(x^2-2\cdot x\cdot\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{9}{16}\right)\)

\(=-2\left(x-\dfrac{1}{4}\right)^2+\dfrac{9}{8}\le\dfrac{9}{8}\forall x\)

Dấu '=' xảy ra khi x=1/4

10 tháng 9 2016

B = - 3x(x + 3) - 7

= -3x2 - 9x - 7

= - 3(x2 + 2 . x . 3/2 + 9/4 - 9/4 + 7/3)

= -3[(x + 3/2)2 + 1/12]

(x + 3/2)2 lớn hơn hoặc bằng 0

(x + 3/2)2 + 1/12 lớn hơn hoặc bằng 1/12

- 3[(x + 3/2)2 + 1/12] nhỏ hơn hoặc bằng - 1/4

Vậy Max B = - 1/4 khi x = - 3/2.

Chúc bạn học tốt ^^

11 tháng 9 2016

cảm ơn bạn nhiều!

11 tháng 9 2016

B=-3x(x+3)-7

  =-3x2-9x-7

  =-3(x2+3x+7/3)

  =-3(x2+2*3/2x+9/4+1/12)

  =-3(x+3/2)2-1/4

Với mọi x thuộc R, ta luôn có: (x+3/2)2>=0

                                  suy ra: -3(x+3/2)2<=0

                                  suy ra: -3(x+3/2)2-1/4<=0-1/4

                                  suy ra: B<=-1/4

                                  suy ra: GTNN của B bằng -1/4

                                  khi  x+3/2=0

                                  suy ra x=-3/2

NẾU ĐÚNG CHO MK NHA