Tìm số đo các cạnh của một tam giác vuông biết rằng các cạnh đó là số tự nhiên có hai chữ số và số đo cạnh huyền nghịch đảo thì đc số đo của một cạnh góc vuông.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Định lý Pitago đã học ở lớp 7, trong chương trình lớp 8 lẽ ra không cần giải thích lại?
Đặt 1 cạnh góc vuông của tam giác là \(\overline{ab}\) thì cạnh huyền là \(\overline{ba}\), với a;b là các chữ số từ 1 đến 9 và \(a>b\)
Đặt cạnh góc vuông còn lại là \(c\Rightarrow10\le c< 99\)
Theo định lý Pitago:
\(\left(\overline{ab}\right)^2+c^2=\left(\overline{ba}\right)^2\Leftrightarrow\left(10a+b\right)^2+c^2=\left(10b+a\right)^2\)
\(\Leftrightarrow100a^2+20ab+b^2+c^2=100b^2+20ab+a^2\)
\(\Leftrightarrow c^2=99\left(b^2-a^2\right)\)
\(\Rightarrow c^2⋮99\) \(\Rightarrow c\) chia hết cho 2 ước nguyên tố của 99 là 3 và 11
\(\Rightarrow c⋮33\Rightarrow c=\left\{33;66\right\}\)
- Với \(c=33\Rightarrow b^2-a^2=11\Leftrightarrow\left(b-a\right)\left(b+a\right)=11\)
\(\Rightarrow\left\{{}\begin{matrix}b-a=1\\b+a=11\end{matrix}\right.\) \(\Rightarrow a=5;b=6\)
- Với \(c=66\Rightarrow b^2-a^2=44\Rightarrow\left(b-a\right)\left(b+a\right)=44\)
\(\Rightarrow\left(a;b\right)=\left(10;12\right)\) đều lớn hơn 9 (loại)
Vậy 3 cạnh của tam giác vuông đó là 33; 56; 65
Đến đây thì 1 vấn đề xuất hiện, lớp 8 chưa học đường tròn, đường tròn nội tiếp thì càng không, vậy làm sao để tính bán kính đường tròn nội tiếp tam giác?
a,b,c là số đo các cạnh của tam giác nên là các số dương, dễ thấy x>y;z
nếu x;y;z là số đo các cạnh của 1 tam giác vuông khác thì x là cạnh huyền
ta xét x2=y2+z2 <=> \(\left(9a+4b+8c\right)^2=\left(4a+b+4c\right)^2+\left(8a+4b+7c\right)^2\)
<=> 81a2+16b2+64c2+72ab+64bc+144ca=80a2+17b2+65c2+72ab+64bc+144ca
<=>a2=b2+c2(đúng do a;b;c là số đo 3 cạnh của 1 tam giác vuông với a độ dài là cạnh huyền,áp dụng định lý Pytago)
Ta đã chứng minh được : x2=y2+z2 .Theo định lý Pytago đảo suy ra x;y;z cũng là số đo 3 cạnh của 1 tam giác vuông
Ta có a,b,c là số đo các cạnh của tam giác nên là các số dương.
Ta thấy x>y;z
Nếu x;y;z là số đo các cạnh của 1 tam giác vuông khác thì x là cạnh huyền
Xét x^2=y^2+z^2 <=>( 9a + 4b + 8c)^2 = (4a + b + 4c)^2+ (8a + 4b + 7c)^2
<=> 81a^2+64c^2+72ab+64bc+144ca=80a^2+17b2^+65c^2+72ab+64bc+144ca
<=>a^2=b^2+c^2
do a;b;c là số đo 3 cạnh của 1 tam giác vuông với a độ dài là cạnh huyền,
Áp dụng định lý Pytago.Ta chứng minh được :
x^2=y^2+z^2
=> x;y;z là số đo 3 cạnh của 1 tam giác vuông (Theo định lý Pytago đảo )
NHỚ TK MK NHALưu Đức Mạnh
Cạnh goc vuông con lại là :
8,4 x 75% = 6,3
DT tam giác :
8,4 x 6,3 :2 = 26,46
sân trường có 25 cây bàng và cây phượng vĩ.Biết số cây bàng bằng 60% số cây đó.Hỏi có bao nhiêu cây phượng vĩ trong sân trường ?
mong cac ban giai tung buoc nha
a/ Kẻ đường cao AH => BH là hình chiếu của AB trên BC và CH là hình chiếu của AC trên BC
Giả sử \(\frac{AB}{AC}=k\Rightarrow\frac{AB^2}{AC^2}=k^2\)
Ta có \(AB^2=BH.BC;AC^2=CH.BC\Rightarrow\frac{AB^2}{AC^2}=\frac{BH}{CH}=k^2\)
b/ Áp dụng câu A sẽ tính được tỷ số hình chiếu 2 cạnh góc vuông trên BC là mà biết chiều dài BC=82 bài toán là dạng tìm 2 số khi biết tổng và tỷ ở lớp 5 rồi bạn tự giải nốt nhé
Chắc chắn là đề bài sai rồi em
Đúng như đề em ghi thì a;b;c là số tự nhiên lớn hơn 9
Giả sử c là cạnh huyền, nghich đảo của c là \(\dfrac{1}{c}< 1\) làm sao bằng a hay b được?
dạ thầy ạ dể em xem lại đề bài đã.