CMR:a*-1=-a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{18.19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)=\frac{1}{4}-\frac{1}{760}< \frac{1}{4}\)(ĐPCM)
TA CŨNG TƯƠNG TỰ GIÁ SỬ PHẢN CHỨNG \(a^2+a+1⋮9\)
=> \(4a^2+4a+4⋮9\)
=> \(4a^2+4a+4⋮3\)
=> \(\left(2a+1\right)^2+3⋮3\)
Mà: \(3⋮3\)
=> \(\left(2a+1\right)^2⋮3\)
=> \(\left(2a+1\right)^2⋮9\) (1)
MÀ: \(\left(2a+1\right)^2+3⋮9\) (2)
TỪ (1) VÀ (2) => \(3⋮9\)
NHƯNG ĐÂY LÀ 1 ĐIỀU RẤT VÔ LÍ
=> ĐIỀU GIẢ SỬ LÀ SAI
=> TA CÓ ĐPCM.
VẬY \(a^2+a+1\) ko chia hết cho 9 \(\forall a\inℤ\)
\(A=1+6+6^2+...+6^9\)
\(=1+\left(6+6^2+6^3\right)+\left(6^4+6^5+6^6\right)+\left(6^7+6^8+6^9\right)\)
\(=1+6\left(1+6+6^2\right)+6^4\left(1+6+6^2\right)+6^7\left(1+6+6^2\right)\)
\(=1+\left(1+6+6^2\right)\left(6+6^4+6^7\right)\)
\(=1+43\left(6+6^4+6^7\right)\)
Ta thấy \(43\left(6+6^4+6^7\right)⋮43\)
nên A chia 43 dư 1
là sao , yêu cầu là j z