K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2016

sao k aj tl

8 tháng 8 2017

\(a,5\frac{4}{7}:x=13\Leftrightarrow x=\frac{39}{7}:13\Leftrightarrow x=\frac{39}{7}.\frac{1}{13}=\frac{3}{7}\)

\(b,\left(2,8x-32\right):\frac{2}{3}=-90\)

\(\Leftrightarrow2,8x-32=-90.\frac{2}{3}=-60\)

\(\Leftrightarrow2,8x=-60+32=-28\)

\(\Leftrightarrow x=\frac{-28}{2,8}=-10\)

d, \(7x=3,2+3x\Leftrightarrow7x-3x=3,2\Leftrightarrow4x=3,2\Leftrightarrow x=3,2:4=3,2.\frac{1}{4}=\frac{4}{5}\)

Câu c bị sai đề :\(\frac{19}{10}-1-\frac{2}{5}=\frac{1}{2}\ne1\)bạn nha.

8 tháng 8 2017

mình lộn \(\left(\frac{19}{10}-1-\frac{2}{5}\right)+\frac{4}{5}=\frac{13}{10}\ne1\)ms đúng nha

14 tháng 3 2017

A=1/1*3+1/3*5+1/5*7+.....+1/99*101

A=1/3*(1-1/3+1/3-1/5+1/5-1/7+.......+1/99-1/101)

A=1/3*(1-1/101)

A=1/3*100/101

A=300/301

14 tháng 3 2017
A=1/1.3+1/3.5+1/5.7...+1/99.101 2A=2/1.3+2/3.5+2/5.7+...+2/99.101 2A=(1-1/3)+(1/3-1/5)+...+(1/99-1/101) 2A=1-1/101 A=(1-101):2 A=100/101.1/2 A=100/202 Dấu / thay cho dấu phân số vì mình trả lời trên điện thoại
18 tháng 12 2016

BĐt phụ : \(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\)

c/m :\(3a^2-3ab+3b^2\ge a^2+ab+b^2\)

\(2a^2-4ab+2b^2\ge0\)

\(2\left(a-b\right)^2\ge0\)(luôn đúng)

Giải ;

ta có:\(\frac{a^3-b^3}{a^2+ab+b^2}+\frac{b^3-c^3}{b^2+bc+c^2}+\frac{c^3-a^3}{c^2+ac+a^2}=\left(a-b\right)+\left(b-c\right)+\left(c-a\right)=0\)

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ac+a^2}\)(1)

\(\frac{a^2-ab+b^2}{a^2+ab+b^2}\ge\frac{1}{3}\Leftrightarrow\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\)

\(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{1}{3}\left(a+b\right)\)

tương tự ta có:\(\frac{b^3+c^3}{b^2+bc+c^2}\ge\frac{1}{3}\left(b+c\right)\);\(\frac{c^3+a^3}{c^2+ca+a^2}\ge\frac{1}{3}\left(a+c\right)\)

cộng vế vs vế ta có:

\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}+\frac{a^3}{c^2+ac+a^2}\ge\frac{2}{3}\left(a+b+c\right)\)

từ (1)→\(2\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\ge\frac{2}{3}\left(a+b+c\right)\)

\(S\ge\frac{1}{3}\left(a+b+c\right)=1\)(đặt S luôn cho tiện)

dấu = xảy ra khi BĐt ở đầu đúng :\(\begin{cases}a=b\\b=c\\c=a\end{cases}\)mà a+b+c=3↔a=b=c=1

 

10 tháng 7 2019

A B C O H F D E M K T A B C D E A B C I G D M Hình 1 Hình 2 Hình 3

Câu 1: (Hinh 1)

a) Gọi AO giao BC tại T. Áp dụng ĐL Thales, hệ quả ĐL Thales ta có các tỉ số:

\(\frac{AK}{AB}=\frac{CM}{BC};\frac{CF}{CA}=\frac{OM}{CA}=\frac{TO}{TA}=\frac{TE}{TB}=\frac{TM}{TC}=\frac{TE+TM}{TB+TC}=\frac{ME}{BC}\)

Suy ra \(\frac{AK}{AB}+\frac{BE}{BC}+\frac{CF}{CA}=\frac{CM+BE+ME}{BC}=1\)(đpcm).

b) Dễ có \(\frac{DE}{AB}=\frac{CE}{CB};\frac{FH}{BC}=\frac{BE+CM}{BC};\frac{MK}{CA}=\frac{BM}{BC}\). Từ đây suy ra:

\(\frac{DE}{AB}+\frac{FH}{BC}+\frac{MK}{CA}=\frac{CE+BM+BE+CM}{BC}=\frac{2\left(BE+ME+CM\right)}{BC}=2\)(đpcm).

Câu 2: (Hình 2)

Qua C kẻ đường thẳng song song với AD cắt tia BA tại E. Khi đó dễ thấy \(\Delta\)CAE cân tại A.

Áp dụng hệ quả ĐL Thales có: \(\frac{AD}{CE}=\frac{BA}{BE}\) hay \(\frac{AD}{CE}=\frac{c}{b+c}\Rightarrow AD=\frac{c.CE}{b+c}\)

Vì \(CE< AE+AC=2b\)(BĐT tam giác) nên \(AD< \frac{2bc}{b+c}\)(đpcm).

Câu 3: (Hình 3)

Gọi M và D thứ tự là trung điểm cạnh BC và chân đường phân giác ứng với đỉnh A của \(\Delta\)ABC.

Do G là trọng tâm \(\Delta\)ABC nên \(\frac{AG}{GM}=2\). Áp dụng ĐL đường phân giác trong tam giác ta có:

\(\frac{IA}{ID}=\frac{BA}{BD}=\frac{CA}{CD}=\frac{BA+CA}{BD+CD}=\frac{AB+AC}{BC}=\frac{2BC}{BC}=2\)

Suy ra \(\frac{IA}{ID}=\frac{GA}{GM}\left(=2\right)\). Áp dụng ĐL Thales đảo vào \(\Delta\)AMD ta được IG // BC (đpcm).