cho hai đoạn thẳng AB và CD cắt nhau tại O sao cho góc AOC =60 độ.
a, tính số đo còn lại .
b,vẽ tia Ot là tia phân giác của góc AOC và Ot' là tia đối của tia Ot. Chứng tỏ rằng Ot' là tia phân giác của góc BOC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) B O D ^ = A O C ^ = 60° (đối đỉnh.).
=> C O B ^ + A O C ^ = 180° (kề bù), => B O C ^ = 180 ° − A O C ^ = 120°
=> A O D ^ = B O C ^ = 120° (đối đỉnh),
b) Vì Ot là phân giác góc AOC nên
A O t ^ = 1 2 A O C ^ = 30°
=> B O t ' ^ = A O t ^ = 30° (đối đỉnh).
Tương tự:
D O t ' ^ = 30 ° ⇒ B O t ' ^ = D O t ' ^
Do đó Ot' là phân giác của B O D ^ .
#)Giải :
a) Vì góc AOC và góc BOD là hai góc đối đỉnh => góc AOC = góc BOD ( = 60o)
Vì góc AOC và góc BOC là hai góc kề bù => góc BOC = 180o - góc AOC = 180o - 60o = 120o
Vì góc BOC và góc AOD là hai góc đối đỉnh => góc BOC = góc AOD ( = 120o)
b) Vì Ot là tia phân giác của góc AOC => góc AOt = góc COt = 60o/2 = 30o
Vì góc AOt và góc BOt' là hai góc đối đỉnh => góc AOt = góc BOt' ( = 30o)
Vì góc COt và góc DOt' là hai góc đối đỉnh => góc COt = góc DOt' ( = 30o)
=> góc BOt' = góc DOt' ( = 30o)
=> Ot' là tia phân giác của góc BOD
Giải
a) +) Vì \(\widehat{AOC}\)và \(\widehat{BOD}\) là 2 góc đối đỉnh
=> \(\widehat{AOC}\) = \(\widehat{BOD}\) = 60o
+) Vì \(\widehat{COB}\) và \(\widehat{BOD}\)là 2 góc kề bù
=> \(\widehat{COB}\)+ \(\widehat{BOD}\)= 180o
Hay \(\widehat{COB}\)+ 60o = 180o
\(\widehat{COB}\) = 180o - 60o = 120o
+) Vì \(\widehat{COB}\)và \(\widehat{AOD}\)là 2 góc đối đỉnh
=> \(\widehat{COB}\)= \(\widehat{AOD}\) = 120o
b) Vì Ot là tia phân giác của \(\widehat{AOC}\)
=> \(\widehat{AOt}\)= \(\widehat{tOC}\)= \(\frac{\text{}\widehat{AOC}}{2}\)= \(\frac{60^o}{2}\)= 30o
Vì \(\widehat{AOt}\)và \(\widehat{BOt'}\)là 2 góc đối đỉnh
=> \(\widehat{AOt}\)= \(\widehat{BOt'}\)= 30o
Vì \(\widehat{COt}\)và \(\widehat{DOt'}\)là 2 góc đối đỉnh
=> \(\widehat{COt}\)= \(\widehat{DOt'}\)= 30o
=> \(\widehat{BOt'}\)= \(\widehat{DOt'}\)( = 30o ) ( 1 )
Trên cùng 1 nửa mặt phẳng bờ chứa tia OD có \(\widehat{DOt'}< \widehat{DOB}\)( vì 30o < 60o )
=> Ot' nằm giữa OB và OD ( 2 )
Từ ( 1 ) và ( 2 ) => Ot' là tia phân giác của \(\widehat{BOD}\)
a) \(\widehat{DOB}=\widehat{AOC}=60^o\) (đối đỉnh)
Ta có : \(\widehat{AOC}+\widehat{BOC}=180^o\) (kề bù)
=> \(\widehat{BOC}=180^o-60^o=120^o\)
\(\widehat{AOD}=\widehat{BOC}=120^o\) (đối đỉnh)
b) Ot là tia p/g của góc AOC nên \(\widehat{tOc}=\frac{1}{2}\widehat{AOC}=30^o\)
Ta có : \(\widehat{tOC}+\widehat{BOC}+\widehat{t'OB}=180^o\) (kề bù)
=> \(30^o+120^o+\widehat{t'OB}=180^o\)
=> \(\widehat{t'OB}=30^o=\frac{1}{2}.60^o=\frac{1}{2}\widehat{BOD}\)
=> Ot' là tia p/g của góc BOD
( Hình dễ nên bạn tự vẽ nhé )
Mình nghĩ câu b chỉ chứng tỏ là tia phân giác của góc BOD thôi