K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

Gọi I là giao điểm của MN và AC.

Ta có: \(\widehat{IHO}=\widehat{OEI}=90°\)

\(\Rightarrow\)Tứ giác EIHO nội tiếp đường tròn.

\(\Rightarrow\)Tâm của đường tròn ngoại tiếp ∆OHE nằm trên đường trung trực của EI.(*)

Ta có ∆AIH \(\approx\)∆AOE 

\(\Rightarrow\)AH.AO = AE.AI (1)

Ta có: ∆AMB \(\approx\)AOM

\(\Rightarrow\)AM2 = AH.AO (2)

Ta lại có: ∆ABM \(\approx\)∆AMC

\(\Rightarrow\)AM2 = AB.AC (3)

Từ (1), (2), (3) \(\Rightarrow\)AE.AI = AB.AC

Vì A,B,C,E cố định nên I cố định (**)

Từ (*), (**) suy ta tâm đường tròn ngoại tiếp ∆OHE nằm trên đường trung trực của EI.

PS: không chứng minh được nó nằm trên đường tròn nha b. Hình tự vẽ.

3 tháng 8 2017

bạn cho mình hỏi tại sao tam giác ABM đồng dạng với tam giác AMC vậy?. Mình ko hiểu chỗ đó

1 tháng 4 2020

GIẢI PHÁP CỦA CÂU NÀY LÀ GHÕ CHO MẠNG

14 tháng 4 2020

gọi Ex là tia đối của tiếp tuyến EA

Ta có : \(\widehat{xED}=\frac{1}{2}sđ\widebat{ED}\)\(\widehat{EFD}=\frac{1}{2}sđ\widebat{ED}\)\(\Rightarrow\widehat{xED}=\widehat{EFD}\)( 1 )

Dễ thấy tứ giác AFOE nội tiếp

I là trung điểm của BC nên OI \(\perp\)BC \(\Rightarrow\)tứ giác AIOE nội tiếp

\(\Rightarrow\)5 điểm A,F,I,O,E cùng thuộc 1 đường tròn

\(\Rightarrow\)tứ giác AFIE nội tiếp \(\Rightarrow\)\(\widehat{EAI}=\widehat{EFI}\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra : \(\widehat{xED}=\widehat{EAI}\Rightarrow ED//AC\)

Gọi N là giao điểm của AO và EF

Dễ chứng minh AN \(\perp\)EF

\(\DeltaẠNH~\Delta AIO\left(g.g\right)\Rightarrow\frac{AN}{AH}=\frac{AI}{AO}\Rightarrow AI.AH=AN.AO\)( 3 )

Ta có : \(AE^2=AN.AO\)( 4 )

Xét \(\Delta AEB\)và \(\Delta ACE\)có :

\(\widehat{EAC}\)( chung ) ; \(\widehat{AEB}=\widehat{ACE}=\frac{1}{2}sđ\widebat{EB}\)

\(\Rightarrow\Delta AEB~\Delta ACE\left(g.g\right)\)

\(\Rightarrow\frac{AE}{AB}=\frac{AC}{AE}\Rightarrow AE^2=AB.AC\)( 5 )

Từ ( 3 ) , ( 4 ) và ( 5 ) suy ra : AH.AI = AB.AC

14 tháng 4 2020

đề bạn cho thiếu nhé. đoạn cuối AH. AI = AB . AC với H là giao điểm của AC và EF