Cho tam giác ABC vuông tại A . kẻ AH vuông góc vs BC . Kẻ HP vuoog góc vs AB và kéo dài để có PE = PH . Kẻ HQ vuoog góc vs AC và kéo dài để có QF = QH
1) Cm : tam giác APE = tam giác APH , tam giác AQH = tam giác AQF
2) Cm : A là trung điểm của EF .
3) Cm : BE//CF
4) Cho AH = 3cm , AC = 5 cm . tính HC , EF
1) Xét ΔAPE vuông tại P và ΔAPH vuông tại P có
AP chung
PE=PH
Do đó: ΔAPE=ΔAPH(hai cạnh góc vuông)
Xét ΔAQH vuông tại Q và ΔAQF vuông tại Q có
AQ chung
HQ=FQ
Do đó: ΔAQH=ΔAQF(hai cạnh góc vuông)
2) Ta có: \(\widehat{FAE}=\widehat{FAH}+\widehat{EAH}\)
\(=2\cdot\left(\widehat{QAH}+\widehat{PAH}\right)\)
\(=2\cdot90^0=180^0\)
Do đó: F,A,E thẳng hàng
mà AE=AF(=AH)
nên A là trung điểm của EF