K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2016

     \(0\le\sin^2x\le1\Rightarrow0,5^0\ge0,5^{\sin^2x}\ge0,5^1\)

 \(\Leftrightarrow1\ge f\left(x\right)\ge\frac{1}{2}\)

 \(\Leftrightarrow\) Max f(x) = 1 khi \(x=k\pi\)

      Min f(x) =\(\frac{1}{2}\) khi \(x=\frac{\pi}{2}+k\pi\)   \(k\in Z\)

14 tháng 5 2016

Đặt \(t=\sin^2x\) với \(t\in\left[0;1\right]\Rightarrow f\left(x\right)=0,5^t=g\left(t\right)\) với \(t\in\left[0;1\right]\)

Ta có : \(g'\left(t\right)=0,5^1\ln0,5=-0,5^t\ln2< 0\) với mọi \(t\in\left[0;1\right]\) hàm số nghịch biến với mọi \(t\in\left[0;1\right]\)

\(\Rightarrow0\le t\le1\Rightarrow g\left(0\right)\ge g\left(t\right)\ge g\left(1\right)\Leftrightarrow1\ge g\left(t\right)\ge\frac{1}{2}\)

Vậy Max f(x) = 1 khi \(x=k\pi\)

Min \(f\left(x\right)=\frac{1}{2}\) khi \(x=\frac{\pi}{2}+k\pi\)  (k thuộc Z)

14 tháng 5 2016

Đặt \(t=\sin^2x\Rightarrow\begin{cases}\cos^2x=1-t\\t\in\left[0;1\right]\end{cases}\) \(\Leftrightarrow f\left(x\right)=5^t+5^{1-t}=g\left(t\right);t\in\left[0;1\right]\)

Ta có : \(g'\left(t\right)=5^t\ln5-5^{1-t}\ln5=\left(5^t-5^{1-t}\right)\ln5=0\)

           \(\Leftrightarrow5^t=5^{1-t}\)

           \(\Leftrightarrow t=1-t\)

           \(t=\frac{1}{2}\)

Mà \(\lim\limits_{x\rightarrow-\infty}g\left(t\right)=\lim\limits_{x\rightarrow-\infty}\left(5^t-5^{1-t}\right)=+\infty\)

       \(\lim\limits_{x\rightarrow+\infty}g\left(t\right)=\lim\limits_{x\rightarrow+\infty}\left(5^t-5^{1-t}\right)=+\infty\)

Ta có bảng biến thiên

t g'(t) g(t) - 8 1 2 + 8 0 - + + 8 + 8 2 căn 5

\(\Rightarrow\) Min \(f\left(x\right)=2\sqrt{5}\) khi  \(t=\frac{1}{2}\Leftrightarrow\sin^2x=\frac{1}{2}\Leftrightarrow\frac{1-\cos2x}{2}=\frac{1}{2}\)

                                             \(\Leftrightarrow\cos2x=0\)                  

                                              \(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)   \(\left(k\in Z\right)\)

22 tháng 4 2017

\(f\left(x\right)=\dfrac{2x-1}{x-3}=\dfrac{2\left(x-3\right)+5}{x-3}=1+\dfrac{5}{\left(x-3\right)}\)

f(x) có dạng \(y=\dfrac{5}{x}\Rightarrow\) f(x) luôn nghịch biến

Tất nhiên bạn có thể tính đạo hàm --> f(x) <0 mọi x khác -3

f(x) luôn nghich biến [0;2] < -3 thuộc nhánh Bên Phải tiệm cận đứng

\(\Rightarrow\left\{{}\begin{matrix}Max=f\left(0\right)=\dfrac{1}{3}\\Min=f\left(2\right)=-3\end{matrix}\right.\)

16 tháng 5 2016

Ta có : \(f'\left(x\right)=2x+\frac{2}{1-2x}=\frac{-4x^2+2x+2}{1-2x}=0\Leftrightarrow-4x^2+2x+2=0\)

                                                                   \(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{1}{2}\in\left[-2;0\right]\\x=1\notin\left[-2;0\right]\end{array}\right.\)

Mà :

    \(\begin{cases}f\left(-2\right)=4-\ln5;x=-2\\f\left(-\frac{1}{2}\right)=\frac{1}{4}-\ln2=\frac{1-4\ln2}{4};x=-\frac{1}{2}\\\end{cases}\)

16 tháng 5 2016
 \(f\left(x\right)=\frac{\ln^2x}{x}\) trên đoạn \(\left[1;e^3\right]\) Ta có : \(f'\left(x\right)=\frac{2\ln x.\frac{1}{x}x-\ln^2x}{x^2}=\frac{2\ln x-\ln^2x}{x^2}=0\Leftrightarrow2\ln x-\ln^2x=0\)\(\Leftrightarrow\left[\begin{array}{nghiempt}\ln x=0\\\ln x=2\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=e^2\end{array}\right.\)Mà :\(\begin{cases}f\left(1\right)=0\\f\left(e^2\right)=\frac{4}{e^2}\\f\left(e^3\right)=\frac{9}{e^3}\end{cases}\)\(\Leftrightarrow\begin{cases}Max_{x\in\left[1;e^3\right]}f\left(x\right)=\frac{4}{e^2};x=e^2\\Min_{x\in\left[1;e^3\right]}f\left(x\right)=0;x=1\end{cases}\)
3 tháng 2 2021

ĐKXĐ : \(-1\le x\le3\)

- ADbu nhi : \(\left(\sqrt{x+1}+\sqrt{3-x}\right)^2\le\left(1^2+1^2\right)\left(\left(\sqrt{x+1}\right)^2+\left(\sqrt{3-x}\right)^2\right)\)

\(=2\left(x+1+3-x\right)=2.4=8\)

\(\Rightarrow\sqrt{x+1}+\sqrt{3-x}\le\sqrt{8}=2\sqrt{2}\)

- Dấu " = " xảy ra \(\Leftrightarrow\dfrac{1}{\sqrt{x+1}}=\dfrac{1}{\sqrt{3-x}}\)

\(\Leftrightarrow x+1=3-x\)

\(\Leftrightarrow x=1\left(TM\right)\)

\(\Rightarrow Max_{f\left(x\right)}=2\sqrt{2}\) tại x = 1.

- Có : \(\sqrt{x+1}+\sqrt{3-x}\ge\sqrt{x+1+3-x}=\sqrt{4}=2\)

- Dấu " = " xảy ra <=> x = -1 ( TM )

\(\Rightarrow Min_{f\left(x\right)}=2\) tại x = - 1 .