K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2016

Ta có \(y'=\frac{\frac{1}{x}x\left(1-\ln x\right)-\left[1-\ln x+x\left(-\frac{1}{x}\right)\right]\left(1+\ln x\right)}{x^2\left(1-\ln x\right)^2}=\frac{1-\ln x+\ln x\left(1+\ln x\right)}{x^2\left(1-\ln x\right)^2}=\frac{1+\ln^2x}{x^2\left(1-\ln x\right)^2}\)

\(\Rightarrow\begin{cases}2x^2y'=2x^2\frac{1+\ln^2x}{x^2\left(1-\ln x\right)^2}=\frac{2\left(1+\ln^2x\right)}{\left(1-\ln x\right)^2}\\x^2y^2+1=x^2\frac{1+\ln^2x}{x^2\left(1-\ln x\right)^2}+1=\frac{\left(1+\ln^2x\right)}{\left(1-\ln x\right)^2}+1=\frac{2\left(1+\ln^2x\right)}{\left(1-\ln x\right)^2}\end{cases}\)

\(\Rightarrow2x^2y'=x^2y^2+1\Rightarrow\) Điều phải chứng minh

12 tháng 5 2016

Ta có : \(y'=x+\frac{1}{2}\left(\sqrt{x^2+1}+x\frac{x}{\sqrt{x^2+1}}\right)+\frac{\frac{1+\frac{x}{\sqrt{x^2+1}}}{2\sqrt{x+\sqrt{x^2+1}}}}{\sqrt{x+\sqrt{x^2+1}}}\)

                \(=x+\frac{2x^2+1}{2\sqrt{x^2+1}}+\frac{x+\sqrt{x^2+1}}{2\left(x+\sqrt{x^2+1}\right)\sqrt{x^2+1}}=x+\frac{2x^2+1}{2\sqrt{x^2+1}}+\frac{1}{2\sqrt{x^2+1}}\)

                \(=x+\frac{2\left(x^2+1\right)}{2\sqrt{x^2+1}}=x+\sqrt{x^2+1}\)

\(\Rightarrow\begin{cases}xy'+\ln y'=x\left(x+\sqrt{x^2+1}\right)+\ln\left(x+\sqrt{x^2+1}\right)=x^2+x\sqrt{x^2+1}+\ln\left(x+\sqrt{x^2+1}\right)\\2y=x^2+x\sqrt{x^2+1}+2\ln\sqrt{x+\sqrt{x^2+1}}=x^2+x\sqrt{x^2+1}+\ln\left(x+\sqrt{x^2+1}\right)\end{cases}\)

\(\Rightarrow2y=xy'+\ln y'\)\(\Rightarrow\) Điều phải chứng minh

12 tháng 5 2016

Ta có : \(y=\frac{1}{1+x+\ln x}\Rightarrow y'=\frac{-\left(1+\frac{1}{x}\right)}{\left(1+x+\ln x\right)^2}=\frac{-\left(1+x\right)}{x\left(1+x+\ln x\right)^2}\)

\(\Rightarrow\begin{cases}xy'=\frac{-\left(1+x\right)}{\left(1+x+\ln x\right)^2}\\y\left(y\ln x-1\right)=\frac{1}{1+x+\ln x}\left(\frac{\ln}{1+x+\ln x}-1\right)=\frac{-\left(1+x\right)}{\left(1+x+\ln x\right)^2}\end{cases}\)

\(\Rightarrow xy'=y\left(y\ln x-1\right)\Rightarrow\) Điều phải chứng minh

12 tháng 5 2016

Ta có : \(y=\sin\left(\ln x\right)+\cos\left(\ln x\right)\Rightarrow\begin{cases}y'=\frac{1}{x}\cos\left(\ln x\right)-\frac{1}{x}\sin\left(\ln x\right)=\frac{\cos\left(\ln x\right)-\sin\left(\ln x\right)}{x}\\y"=\frac{\left[-\frac{1}{x}\sin\left(\ln x\right)-\frac{1}{x}\cos\left(\ln x\right)\right]x-\left[\cos\left(\ln x\right)-\sin\left(\ln x\right)\right]}{x^2}=\frac{-2\cos\left(\ln x\right)}{x^2}\end{cases}\)

\(\Rightarrow y+xy'+x^2y"=\sin\left(\ln x\right)+\cos\left(\ln x\right)+\cos\left(\ln x\right)-\sin\left(\ln x\right)-2\cos\left(\ln x\right)=0\)

=> Điều cần chứng minh

5 tháng 5 2016

Ta có \(y'=\frac{\cos\left(\ln x\right)-\sin\left(\ln x\right)}{x}\)

                 \(\Rightarrow y"=\frac{x.\frac{-\sin\left(\ln x\right)-\cos\left(\ln x\right)}{x}-\left[\cos\left(\ln x\right)-\sin\left(\ln x\right)\right]}{x^2}=\frac{-2\cos\left(\ln x\right)}{x^2}\)

Ta có : 

            \(y+xy'+x^2y"=\sin\left(\ln x\right)+\cos\left(\ln x\right)+\cos\left(\ln x\right)-\sin\left(\ln x\right)-2\cos\left(\ln x\right)=0\)

22 tháng 3 2020

\(\left(\frac{2x+2y-z}{3}\right)^2+\left(\frac{2y+2z-x}{3}\right)^2+\left(\frac{2z+2x-y}{3}\right)^2\\ =\frac{4x^2+4y^2+z^2+8xy-4xz-4yz}{9}+\frac{4y^2+4z^2+x^2+8yz-4xy-4xz}{9}+\frac{4z^2+4x^2+y^2+8xz-4yz-4xy}{9}\\ =\frac{9x^2+9y^2+9z^2}{9}=x^2+y^2+z^2\)

22 tháng 3 2020

- Ta có : \(\left(\frac{2x+2y-z}{3}\right)^2+\left(\frac{2y+2z-x}{3}\right)^2+\left(\frac{2x+2z-y}{3}\right)^2\)

\(=\frac{\left(2x+2y-z\right)^2}{9}+\frac{\left(2y+2z-x\right)^2}{9}+\frac{\left(2x+2z-y\right)^2}{9}\)

\(=\frac{\left(2x+2y-z\right)^2+\left(2y+2z-x\right)^2+\left(2x+2z-y\right)^2}{9}\)

\(=\frac{4x^2+4y^2+z^2+8xy-4yz-4xz+4y^2+4z^2+x^2+8yz-4xy-4xz+4x^2+4z^2+y^2+8xz-4xy-4yz}{9}\)

\(=\frac{9x^2+9y^2+9z^2}{9}=\frac{9\left(x^2+y^2+z^2\right)}{9}=x^2+y^2+z^2\)

12 tháng 5 2016

Ta có : \(y=\ln\left(\frac{1}{1+x}\right)\Rightarrow y'=\frac{-\frac{1}{\left(1+x\right)^2}}{\frac{1}{1+x}}=\frac{-1}{1+x}\)

\(\Rightarrow\begin{cases}xy'+1=\frac{-x}{1+x}+1=\frac{1}{1+x}\\e^y=e^{\ln\left(\frac{1}{1+x}\right)}=\frac{1}{1+x}\end{cases}\)

\(\Rightarrow xy'+1=e^y\) (điều phải chứng minh)