K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2016

A= 3n+2/n-1 = 3n-3+5/n-1 = 3n-3/n-1 + 5/n-1 = 3 - 5/n-1

Vậy A là số nguyên khi 5 chia hết cho n-1 (nguyên trừ nguyên mới ra nguyên nhen)

=>n-1 thuộc Ư{5}={1;-1;5;-5}

=>n thuộc {2;0;6;-4}

Không chắc nhen

12 tháng 5 2016

vì 3n +2/n-1 có giá trị là 1 số nguyên nên 3n+2 chia hết cho n-1.                                                 Ta có: 3n+2 chia hết cho n-1                                                                                                                       3n-3+5 chia hết cho n-1                                                                                                                   (3n-3)+5 chia hết cho n-1                                                                                                                 3(n-1)+5 chia hết cho n-1                                                                                                         suy ra, 5 chia hết cho n-1(vì 3(n-1) chia hết cho n-1)                                                                 suy ra, n-1 thuộc Ư(5)=(-1,-5,5,1)                                                                                              suy ra, n thuộc(0,-4,6,2)                                                                                                           Vay n thuoc (0,-4,6,2)

 

11 tháng 4 2019

ĐKXĐ : \(x\ne1\)

\(A=\frac{3n+2}{n-1}\)nguyên thì :

\(\left(3n+2\right)⋮\left(n-1\right)\)

\(\left(3n-3+5\right)⋮\left(n-1\right)\)

\(3\left(n-1\right)+5⋮\left(n-1\right)\)

Ta có : \(3\left(n-1\right)⋮\left(n-1\right)\)

\(\Rightarrow5⋮\left(n-1\right)\)

\(\Rightarrow\left(n-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{2;0;6;-4\right\}\)( thỏa mãn ĐKXĐ )

Vậy....

11 tháng 4 2019

ĐKXĐ: n-1 khác 0=>n khác 1

ta có đề\(\Leftrightarrow\frac{3n-3+5}{n-1}\Leftrightarrow\frac{3n-3}{n-1}+\frac{5}{n-1}\)

\(\Leftrightarrow3+\frac{5}{n-1}\) vậy đề A là số nguyên => n-1 thuộc Ư(5)=> để A là số nguyên thì n-1={-1,-5,1,5}

bạn xét 4 trường hợp r giải là ra nha

k cho mình nha bạn

2 tháng 5 2017

1)

\(\frac{3n+2}{n-1}\) là số nguyên khi \(\left(3n+2\right)⋮\left(n-1\right)\).

\(3n+2=3n-3+3+2=3\left(n-1\right)+5\)

Mà \(3\left(n-1\right)⋮\left(n-1\right)\) nên để \(\left[3\left(n-1\right)+5\right]⋮\left(n-1\right)\) thì \(5⋮\left(n-1\right)\)

\(\Rightarrow\left(n-1\right)\inƯ\left(5\right)\) hay \(\left(n-1\right)\in\) { -5; -1; 1; 5 }      ( Không viết được dấu ngoặc nhọn nên mình viết vậy nhé )

\(\Rightarrow n\in\)​ { -4; 0; 2; 6 }

Vậy \(n\in\)​ { -4; 0; 2; 6 }

2)

a)\(\frac{1}{6};\frac{1}{3};\frac{1}{2};...\)

Quy đồng mẫu các phân số ta có:

\(\frac{1}{6};\frac{2}{6};\frac{3}{6};...\)

\(\Rightarrow\)3 phân số tiếp theo là \(\frac{4}{6}\)hay \(\frac{2}{3}\)\(\frac{5}{6}\)và \(\frac{6}{6}\)hay 1.

Vậy 3 phân số tiếp theo là \(\frac{2}{3}\)\(\frac{5}{6}\)và 1.

b)

Làm tương tự câu a) ta có 3 phân số tiếp theo là \(\frac{7}{20};\frac{2}{5};\frac{9}{20}\).

c)

Làm tương tự câu a) ta có 3 phân số tiếp theo là \(\frac{11}{30};\frac{2}{5};\frac{13}{30}\)

7 tháng 8 2016

a, \(A=\frac{6n-1}{3n+2}=\frac{2.\left(3n+2\right)-5}{3n+2}=\frac{2.\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)

Để A có giá trị là số nguyên 

=>5/3n+2 phải là số nguyên

=>5 chia hết cho 3n+2

=>3n+2 thuộc Ư(5)={-1;1;-5;5}

Vì 3n+2 là số chia cho 3 dư 2

=>3n+2=5

=>3n=5-2

=>3n=3

=>n=3:3

=>n=1

15 tháng 9 2016

Ý, Nguyễn Lê Thanh Hà là nick cũ của mik nè.Tuần này lại mất thêm 2 nick. Tổng cộng mik mất nick 3 lần r mà chẳng lấy lại dc! Ko bít đứa nào hack r đổi mật khẩu nx lun!!

24 tháng 2 2021

mình thua

18 tháng 4 2021

bo tay

22 tháng 4 2021

a) n thuộc Z 

b) Vì 1/2 ko thc Z mà n thc Z => ko có gtrị nao của n thc Z để A là số nguyên

8 tháng 7 2016

\(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=3+\frac{21}{n-4}\)

\(\Rightarrow n-4\inƯ\left(21\right)\Rightarrow n-4\in\left\{-21;-7;-3;-1;1;3;7;21\right\}\)

\(\Rightarrow n\in\left\{-17;3;1;3;5;7;11;25\right\}\)

( giá trị là chỗ n-4 \(\in\){ -21;-7;...;21 } rồi + 3 nha bạn )

\(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)

\(\Rightarrow2n-1\inƯ\left(8\right)\Rightarrow2n-1\in\left\{-1;1\right\}\)( vì 2n - 1 là số lẻ )

\(\Rightarrow n\in\left\{0;1\right\}\)

( giá trị là chỗ 2n-1 \(\in\){ -1;1 } rồi + 3 nha bạn )

8 tháng 7 2016
  • \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)

Để A nguyên thì \(\frac{21}{n-4}\) nguyên

=>21 chia hết cho n-4

=>n-4\(\in\)Ư(21)

=>n-4\(\in\left\{-21;-7;-3;-1;1;3;7;21\right\}\)

=>n\(\in\left\{-17;-3;1;3;5;7;11;25\right\}\)(1)

  • \(B=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=\frac{3\left(2n-1\right)}{2n-1}+\frac{8}{2n-1}=3+\frac{8}{2n-1}\)

Để B nguyên thì \(\frac{8}{2n-1}\) nguyên

=>8 chia hết cho 2n-1

=>2n-1\(\in\)Ư(8)

=>2n-1\(\in\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

=>2n\(\in\left\{-7;-3;-1;0;2;3;5;9\right\}\)

=>n\(\in\left\{\frac{-7}{2};\frac{-3}{2};\frac{-1}{2};0;1;\frac{3}{2};\frac{5}{2};\frac{9}{2}\right\}\)

Vì n là số nguyên nên n\(\in\left\{0;1\right\}\)(2)

Từ (1) và (2) => n=1 thì A và B nguyên

n=1 => \(A=3+\frac{21}{n-4}=3+\frac{21}{1-4}=3+\frac{21}{-3}=3+\left(-7\right)=-4\)

           \(B=3+\frac{8}{2n-1}=3+\frac{8}{2.1-1}=3+\frac{8}{1}=3+8=11\)

Kết luận:n=1 thì A=-4 và B=11