Cho tam giác ABC cân tại A . Có đường trung tuyến AD (D thuộc BC)
a) CM: tam giác ABD = tam giác ACD
b) Biết A = 90o ; Tính góc B . Tam giác ABC là tam giác gì
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABD và tam giác ACD
^BAD = ^CAD
AB = AC
AD _ chung
Vậy tam giác ABD = tam giác ACD (c.g.c)
b, Xét tam giác ABC cân tại A có AD là pg
đồng thời là đường cao
=> AD vuông BC
a: Xét ΔADB và ΔADC có
AB=AC
góc BAD=góc CAD
AD chung
=>ΔADB=ΔADC
b: Xét ΔAED vuông tại E và ΔAFD vuông tại F có
AD chung
góc EAD=góc FAD
=>ΔAED=ΔAFD
=>AE=AF và DE=DF
c: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
a. Xét tam giác ABD và tam giác ACD
AB = AC ( ABC cân )
góc B = góc C ( ABC cân )
AD : cạnh chung
Vậy tam giác ABD = tam giác ACD ( c.g.c )
b. ta có trong tam giác ABC đường trung tuyến cũng là đường cao
=> AD vuông BC
CD = BC : 2 = 12 : 2 =6cm
c.áp dụng định lý pitago vào tam giác vuông ADC
\(AC^2=AD^2+DC^2\)
\(AD=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)
d.Xét tam giác vuông BDE và tam giác vuông CDF có:
AD = CD ( gt )
góc B = góc C
Vậy tam giác vuông BDE = tam giác vuông CDF ( cạnh huyền . góc nhọn)
=> DE = DF ( 2 cạnh tương ứng )
=> tam giác DEF cân tại D
a) Tam giác ABD và tam giác ACD có:
BD = CD (Vì D là trung điểm của BC)
góc B = góc C
(vì tam giác ABC cân tại A)
AB = AC
Do đó: am giác ABD = tam giác ACD (c.g.c)
Suy ra: Góc ADB = góc ADC (cặp góc t/ứng)
b) Vì góc ADB = góc ADC (cmt) mà góc ADB + góc ADC 180 độ (2 góc kề bù)
nên góc ADB = 180 độ / 2 = 90 độ => AD vuông góc với BC
c) Ta có : BD + CD = BC ( Vì D nằm giữa B và C)
mà BC = 12 cm
=> CD = 12 /2 = 6 cm
Vì AD vuông góc với BC nên tam giác ADC vuông tại D
=> AC2AC2 = AD2AD2 +CD2CD2 (Định lý Pytago)
=> 10^2 = AD ^ 2 + 6 ^2
=> AD^2 = 64
=> AD = 8 (cm) (vì AD > 0 )
d) bạn c/m cho tam giác DEB = tam giác DFC (cạnh huyền - góc nhọn) nhé
=> DE = DF (cặp cạnh tương ứng) => tam giác DEF cân tại D( đn)
Đáp án:a) Xét 2 tam giác ABD và ACD có:
góc BAD = góc CAD( AD là tia phân giác của tg ABC)
AB= AC( tg ABC cân tại A)
góc ABC= góc ACB( tg ABC cân tại A)
=> tg ABD = ACD(gcg)
b) xét ABM và CGM
=> 2 tg bằng nhau theo TH (cgc)
=> AP=CG
c)Ta có : MG = MP (1)
Ta lại có: PAM = GCM(cmt)
mà GCM = GAM ( tg AGC cân tại G do tính chất đường trung tuyến)
=> AM là tia phân giác của tg GAP(2)
(1),(2)=> AM vừa là đường trung tuyến vừa là tia phân giác của tg PAG
Hay tg PAG là tg cân
Hình bạn tự vẽ nha
a,Xét tam giác abd và tam tam giác acd có
ab=ac
góc bad= góc cad
adchung
=>tam giác abd = tam giác acd (c.g.c)
b,vì tam giác abd=tam giác acd
=>góc adb =góc adc
mà góc adb + góc adc=180 độ
=>ad vuông góc với bc
c,bd=16:2=8cm
áp dụng định lí PY-TA-GO vào tam giác abd
ta có
ab^2=ad^2+bd^2
=>ad^2=ab^2-bd^2
=>ad=6cm
a) Xet tam giac ADB va tam giac ADC ta co
BA=CA theo gia thiet
goc BAD=goc ACD theo gia thiet
canh chung AD
nen suy ra:tam giac ADB=tam giac ADC theo truong hop canh goc canh
b) tu cau a ta co goc ADB= goc ADC hai goc tung ung
nen suy ra GOC ADB= gocADC =180:2=90DO
Vay ta co AD vuong goc voi BC
c)vi BD=1/2BC nen ta co BD =16:2 =8
vay theo dinh ly pi ta go ta co 10^2+8^2=100+64=164
nen ta co ADbang can bac 2 cua 164
b) Xét ΔADB vuông tại D và ΔEDC vuông tại D có
DB=DC(cmt)
DA=DE(gt)
Do đó: ΔADB=ΔEDC(hai cạnh góc vuông)
Suy ra: AB=EC(Hai cạnh tương ứng)
mà AB=AC(ΔBAC cân tại A)
nên CA=CE
Xét ΔCAE có CA=CE(cmt)
nên ΔCAE cân tại C(Định nghĩa tam giác cân)
Xét tam giác ABD và tam giác ACD có:
AB = AC (gt)
Góc B = Góc C
BD = CD (gt)
Vậy tam giác ABD = tam giác ACD (c - g - c)
b) A = 90o
=> Góc B = \(\frac{180^0-90^0}{2}=45^0\)
Vì tam giác ABC là tam giác cân
Mà A = 90o => Tam giác ABC vuông
Vậy tam giác ABC là tam giác vuông cân