cho y=\(\ln\frac{1}{1+x}\) chứng minh hệ thứ xy'+1=\(e^y\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(y'=\frac{-1-\frac{1}{x}}{\left(1+x+\ln x\right)^2}=-\frac{x+1}{x\left(1+x+\ln x\right)^2}\)
\(\Rightarrow xy'=-\frac{x+1}{\left(1+x+\ln x\right)^2}\) (1)
Lại có \(y\left(y\ln x-1\right)=\frac{-1-x}{\left(1+x+\ln x\right)^2}\) (2)
Từ (1) và (2) suy ra \(xy'=y\left(y\ln x-1\right)\)
Ta có : \(y=\ln\left(\frac{1}{1+x}\right)\Rightarrow y'=\frac{-\frac{1}{\left(1+x\right)^2}}{\frac{1}{1+x}}=\frac{-1}{1+x}\)
\(\Rightarrow\begin{cases}xy'+1=\frac{-x}{1+x}+1=\frac{1}{1+x}\\e^y=e^{\ln\left(\frac{1}{1+x}\right)}=\frac{1}{1+x}\end{cases}\)
\(\Rightarrow xy'+1=e^y\) (điều phải chứng minh)
\(y'=\frac{1-\ln x-\left(1-\ln x-1\right)}{x^2\left(1-\ln x\right)^2}=\frac{1}{x^2\left(1-\ln x\right)^2}\)
Ta có : \(y=\frac{1}{1+x+\ln x}\Rightarrow y'=\frac{-\left(1+\frac{1}{x}\right)}{\left(1+x+\ln x\right)^2}=\frac{-\left(1+x\right)}{x\left(1+x+\ln x\right)^2}\)
\(\Rightarrow\begin{cases}xy'=\frac{-\left(1+x\right)}{\left(1+x+\ln x\right)^2}\\y\left(y\ln x-1\right)=\frac{1}{1+x+\ln x}\left(\frac{\ln}{1+x+\ln x}-1\right)=\frac{-\left(1+x\right)}{\left(1+x+\ln x\right)^2}\end{cases}\)
\(\Rightarrow xy'=y\left(y\ln x-1\right)\Rightarrow\) Điều phải chứng minh
Ta có : \(y'=x+\frac{1}{2}\left(\sqrt{x^2+1}+x\frac{x}{\sqrt{x^2+1}}\right)+\frac{\frac{1+\frac{x}{\sqrt{x^2+1}}}{2\sqrt{x+\sqrt{x^2+1}}}}{\sqrt{x+\sqrt{x^2+1}}}\)
\(=x+\frac{2x^2+1}{2\sqrt{x^2+1}}+\frac{x+\sqrt{x^2+1}}{2\left(x+\sqrt{x^2+1}\right)\sqrt{x^2+1}}=x+\frac{2x^2+1}{2\sqrt{x^2+1}}+\frac{1}{2\sqrt{x^2+1}}\)
\(=x+\frac{2\left(x^2+1\right)}{2\sqrt{x^2+1}}=x+\sqrt{x^2+1}\)
\(\Rightarrow\begin{cases}xy'+\ln y'=x\left(x+\sqrt{x^2+1}\right)+\ln\left(x+\sqrt{x^2+1}\right)=x^2+x\sqrt{x^2+1}+\ln\left(x+\sqrt{x^2+1}\right)\\2y=x^2+x\sqrt{x^2+1}+2\ln\sqrt{x+\sqrt{x^2+1}}=x^2+x\sqrt{x^2+1}+\ln\left(x+\sqrt{x^2+1}\right)\end{cases}\)
\(\Rightarrow2y=xy'+\ln y'\)\(\Rightarrow\) Điều phải chứng minh
Ta có \(y'=\frac{\cos\left(\ln x\right)-\sin\left(\ln x\right)}{x}\)
\(\Rightarrow y"=\frac{x.\frac{-\sin\left(\ln x\right)-\cos\left(\ln x\right)}{x}-\left[\cos\left(\ln x\right)-\sin\left(\ln x\right)\right]}{x^2}=\frac{-2\cos\left(\ln x\right)}{x^2}\)
Ta có :
\(y+xy'+x^2y"=\sin\left(\ln x\right)+\cos\left(\ln x\right)+\cos\left(\ln x\right)-\sin\left(\ln x\right)-2\cos\left(\ln x\right)=0\)
ta có \(\ln\frac{1}{1+x}=-\ln\left(1+x\right)\Rightarrow y'=-\frac{1}{1+x}\)
vậy xy'+1=\(\frac{-x}{1+x}+1=\frac{1}{1+x}=e^y\)
Em không hiểu tại sao lại bằng e^y