Cho tam giác ABC có trung tuyến AM. Tia phân giác của góc AMB cắt AB tại E, tia phân giác của góc AMC cắt AC tại D.
a)So sánh AE/EB và AD/DC
b)Gọi I là giao điểm của AM và ED. Chứng minh I là trung điểm ED.
c)Cho BC = 16 cm, CD/DA = 3/5. Tính ED
d)Gọi F, K lần lượt là giao điểm EC với AM, DM. Chứng minh EF.KC = FK.EC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMAB có MD là phân giác
nên AD/DB=AM/MB=AM/MC
Xét ΔAMC có ME là phân giác
nên AE/EC=AM/MC
=>AD/DB=AE/EC
=>ED//BC
b: Xét ΔABM có DI//BM
nên DI/BM=AI/AM
Xét ΔACM có EI//MC
nên EI/CM=AI/AM
=>DI/BM=EI/CM
=>DI=EI
Hình bạn tự vẽ nha.
a, \(\Delta ABC\) có: AM là đường trung tuyến của \(\Delta ABC\)\(\Rightarrow BM=MC\), \(AI=\frac{2}{3}AM\)
\(\Delta AMB\)có: MD là phân giác của \(\widehat{AMB}\)\(\Rightarrow\frac{AD}{DB}=\frac{AM}{MB}\)(tính chất đường phân giác trong tam giác) (1)
\(\Delta AMC\)có: ME là phân giác của \(\widehat{AMC}\)\(\Rightarrow\frac{AE}{EC}=\frac{AM}{MC}\)(tính chất đường phân giác trong tam giác) (2)
Từ (1), (2) và \(BM=MC\left(cmt\right)\Rightarrow\frac{AD}{DB}=\frac{AE}{EC}\)
\(\Delta ABC\)có: \(\frac{AD}{DB}=\frac{AE}{EC}\left(cmt\right)\Rightarrow DE//BC\)(định lý Ta-lét đảo)
b, \(\Delta ABM\)có: \(DI//BM\left(cmt\right)\Rightarrow\frac{DI}{BM}=\frac{AI}{AM}\)(hệ quả của định lý Ta-lét) (3)
\(\Delta AMC\)có: \(IE//MC\left(cmt\right)\Rightarrow\frac{IE}{CM}=\frac{AI}{AM}\)(hệ quả của định lý Ta-lét) (4)
Từ (3), (4) và \(BM=MC\left(cmt\right)\Rightarrow DI=IE\)
c, Ta có: \(\frac{IE}{CM}=\frac{AI}{AM}\left(cmt\right)\)\(\Leftrightarrow\frac{IE}{15}=\frac{\frac{2}{3}AM}{AM}\)\(\Leftrightarrow\frac{IE}{15}=\frac{\frac{2}{3}.10}{10}\)\(\Leftrightarrow\frac{IE}{15}=\frac{2}{3}\)\(\Leftrightarrow IE=10\left(cm\right)\)
a: Xét ΔAMB có ME là đường phân giác
nên AE/EB=AM/MB=AM/MC(4)
XétΔAMC có MD là đường phân giác
nên AD/DC=AM/MC(5)
Từ (4) và (5) suy ra AE/EB=AD/DC
b: Xét ΔABC có
AE/EB=AD/DC
nên ED//BC
Xét ΔABM có EI//BM
nên EI/BM=AE/AB(1)
Xét ΔACM có ID//MC
nên ID/MC=AD/AC(2)
Xét ΔABC có
ED//BC
nên AE/AB=AD/AC(3)
Từ (1), (2) và (3) suy ra EI/BM=DI/MC
mà BM=CM
nên EI=DI
hay I là trung điểm của ED