Tìm tất cả những điểm nằm trên trục tung mà từ đó chỉ có thể kẻ được đúng một tiếp tuyến đến đồ thị hàm số \(y=\frac{x+1}{x-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(M\left(0;m\right)\in Oy\). Đường thẳng d đi qua M, hệ số góc k có phương trình : \(y=kx+m\)
d là tiếp tuyến \(\Leftrightarrow\begin{cases}x^4-2x^2-1=kx+m\\4x^3-4x=k\end{cases}\) có nghiệm
Thế k vào phương trình thứ nhất, ta được :
\(-x^4-2x^2-1=4x^4-4x^2+m\)
\(\Leftrightarrow5x^4-2x^2+1+m=0\) (*)
Để từ M ta có thể kẻ đến đồ thị đúng 3 tiếp tuyến \(\Leftrightarrow\) (*) có 3 nghiệm phân biệt \(\Leftrightarrow m+1=0\Leftrightarrow m=-1\)
Khi đó (*) có 3 nghiệm \(x=0;x=\pm\sqrt{\frac{2}{5}}\) và 3 tiếp tuyến đó là :
\(y=-1;y=\pm\sqrt{\frac{2}{5}}x-1\)
Vậy \(M\left(0;-1\right)\) là điểm cần tìm
Đáp án D.
y ' = 3 x 2 − 12 x + 9
Gọi M x 0 ; x 0 3 − 6 x 0 2 + 9 x 0 − 1 là một điểm bất kì thuộc (C) . Tiếp tuyến tại M:
y = 3 x 0 2 − 12 x 0 + 9 x − x 0 + x 0 3 − 6 x 0 2 + 9 x 0 − 1
⇔ y = 3 x 0 2 − 12 x 0 + 9 x − 2 x 0 3 + 6 x 0 2 − 1
Gọi A a ; a − 1 là một điểm bất kì thuộc đường thẳng y = x − 1 .
Tiếp tuyến tại M đi qua A ⇔ 3 x 0 2 − 12 x 0 + 9 a − 2 x 0 3 + 6 x 0 2 − 1 = a − 1
⇔
3
x
0
2
−
12
x
0
+
8
a
=
2
x
0
3
−
6
x
0
2
(*).
Từ A kẻ được hai tiếp tuyến đến C ⇔ * có hai nghiệm phân biệt.
Ta có
3 x 0 2 − 12 x 0 + 8 = 0 ⇔ x 0 = 6 ± 2 3 3
Dễ thấy x 0 = 6 ± 2 3 3 không thỏa mãn .
Với x 0 ≠ 6 ± 2 3 3 thì * ⇔ a = 2 x 0 3 − 6 x 0 2 3 x 0 2 − 12 x 0 + 8 .
Xét hàm số f x = 2 x 3 − 6 x 2 3 x 2 − 12 x + 8 . Ta có f ' x = 6 x 4 − 8 x 3 + 20 x 2 − 16 x 3 x 2 − 12 x + 8 2 .
Bảng biến thiên của :
Vậy để (*) có 2 nghiệm phân biệt thì a ∈ 0 ; 4 . Suy ra tập T = 0 ; − 1 , 4 ; 3
Do đó tổng tung độ các điểm thuộc T bằng 2.
Chọn đáp án C
Tập xác định: D = R.
Gọi ∆ là đường thẳng đi qua M 0 ; m và có hệ số góc là k, phương trình đường thẳng ∆ : y = k x + m .
Đường thẳng ∆ là tiếp tuyến của (C) khi và chỉ khi hệ phương trình sau có nghiệm :
Hệ phương trình trên có nghiệm khi và chỉ khi phương trình (*) có nghiệm
Xét hàm số f x = x + 2 2 x 2 + x + 1 trên R.
Đạo hàm
Bảng biến thiên
Dựa vào bảng biến thiên ta thấy: Phương trình (*) có nghiệm
⇔ - 1 2 < m ≤ - 1 hay m ∈ ( - 1 2 ; 1 ] .
Đáp án A
Ta có: y ' = x − 1 − x + 3 x − 1 2 = − 4 x − 1 2 .
Tiếp tuyến tại M x 0 ; x 0 + 3 x 0 − 1 ∈ C là:
y = − 4 x 0 − 1 2 x − x 0 + x 0 + 3 x 0 − 1 = − 4 x x 0 − 1 2 + x 0 2 + 6 x 0 − 3 x 0 − 1 2 .
Tiếp tuyến đi qua M x 1 ; 2 x 1 + 1 nên:
2 x 1 + 1 = − 4 x 1 x 0 − 1 2 + x 0 2 + 6 x 0 − 3 x 0 − 1 2
⇔ 2 x 1 + 1 x 0 2 − 2 x 0 + 1 = x 0 2 + 6 x 0 − 3 − 4 x 1 ⇔ 2 x 1 − 1 x 0 2 − 4 x 1 + 2 x 0 + 6 x 1 + 4 = 0 (*)
Qua M x 1 ; 2 x 1 + 1 kẻ được đúng một tiếp tuyến đến đồ thị hàm số (C) nên (*) có nghiệm duy nhất
⇔ Δ ' = 4 x 1 + 2 2 − 2 x 1 − 1 6 x 1 + 4 = 0 ⇔ − 4 x 1 2 + 7 x 1 + 10 = 0 ⇔ x 1 = 7 ± 209 8 .
Vậy có 2 điểm từ đó kẻ được đúng 1 tiếp tuyến đến đồ thị hàm số.
Đáp án B.
Gọi A 0 ; a là điểm trên trục tung thỏa mãn yêu cầu đề bài.
Gọi k là hệ số góc tiếp tuyến đi qua A.
Lúc này ta có hệ
x 4 − x 2 + 1 = k x − 0 + a 4 x 3 − 2 x = k ⇒ x 4 − x 2 + 1 = 4 x 3 − 2 x x + a
⇔ 3 x 4 − x 2 + a − 1 = 0 (*).
Để từ A kẻ được ba tiếp tuyến khác nhau trên đồ thị hàm số y = x 4 − x 2 + 1 thì phương trình (*) phải có đúng 3 nghiệm phân biệt.
Điều này xảy ra khi và chỉ khi phương trình (*) có 1 nghiệm bằng 0 và 1 nghiệm dương ⇔ a = 1 . Vậy có duy nhất một điểm trên trục tung thỏa mãn yêu cầu đề bài.
Giao điểm của đồ thị hàm số (C) và trục tung là điểm N(0;1)
Ta có : \(f'\left(x\right)=\frac{3}{\left(1-x\right)^2}\) suy ra tiếp tuyến tại điểm N là \(\left(\Delta\right):y=3x+1\Leftrightarrow\left(\Delta\right):3x-y+1=0\)
Xét điểm \(M\left(a+1;\frac{2a+3}{-a}\right)\in\left(C\right),a>0\)
Ta có : \(d_{M\\Delta }=\frac{\left|3\left(a+1\right)+\frac{2a+3}{a}+1\right|}{\sqrt{10}}=\frac{1}{\sqrt{10}}.\frac{3a^2+6a}{+3a}=\frac{3}{\sqrt{10}}\left(a+\frac{2}{a}+1\right)\ge\frac{3}{\sqrt{10}}\left(2\sqrt{2}+1\right)\)
Dấu bằng xảy ra khi \(a=\frac{2}{a}\Leftrightarrow a=\sqrt{2}\Rightarrow M\left(\sqrt{2}+1;\frac{2\sqrt{2}+5}{-\sqrt{2}}\right)\)
\(y'=\dfrac{-2}{\left(x-1\right)^2}\)
Gọi điểm trên trục tung có tọa độ \(M\left(0;m\right)\)
Đường thẳng d qua M có dạng: \(y=kx+m\)
d không tiếp xúc đồ thị hàm số khi và chỉ khi:
\(\left\{{}\begin{matrix}\dfrac{x+1}{x-1}=kx+m\\k=\dfrac{-2}{\left(x-1\right)^2}\end{matrix}\right.\) vô nghiệm
\(\Rightarrow\dfrac{x+1}{x-1}=\dfrac{-2x}{\left(x-1\right)^2}+m\) vô nghiệm
\(\Rightarrow\left(m-1\right)x^2-2\left(m+1\right)x+m+1=0\)
\(\Delta'=\left(m+1\right)^2-\left(m-1\right)\left(m+1\right)< 0\)
\(\Leftrightarrow2m+2< 0\)
\(\Rightarrow m< -1\)
Hay \(y< -1\)
Đáp án C
Phương pháp giải: Lập phương trình tiếp tuyến với hệ số góc k và đi qua điểm thuộc Oy, sử dụng điều kiện để hai đồ thị tiếp xúc tìm tham số m
Xét \(M\left(0;m\right)\in Oy\), đường thẳng d đi qua M, hệ số góc k có phương trình : \(y=kx+m\)
d là tiếp tuyến \(\Leftrightarrow\begin{cases}\frac{x+1}{x-1}=kx+m\\\frac{-2}{\left(x-1\right)^2}=k\end{cases}\) có nghiệm
Thế k vào phương trình thứ nhất, ta được :
\(\frac{x+1}{x-1}=\frac{-2x}{\left(x-1\right)^2}+m\Leftrightarrow\left(m-1\right)x^2-2\left(m+1\right)x+m+1=0\) (*)
Để từ M chỉ kẻ được đúng một tiếp tuyến đến đồ thị hàm số đã cho \(\Leftrightarrow\) (*) có đúng 1 nghiệm.
Do (*) không có nghiêm x = 1 nên (*) có đúng 1 nghiệm
\(\Leftrightarrow\left[\begin{array}{nghiempt}m=1\\\Delta'=2m+2=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}m=1\\m=-1\end{array}\right.\)
Vậy có 2 điểm \(M_1\left(0;1\right);M_2\left(0;-1\right)\) thỏa mãn bài toán