một hội trường đượ kê thành các dãy ghế cả thảy 300 chỗ ngồi.trong một lần họp 352 người đến dự nên phải kê thêm 2 dãy ghế nữa và mỗi dãy phải xếp thêm 1 chỗ ngồi nữa mới đủ chỗ.hỏi ban đầu hội trường có bao nhieu dãy ghế?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án : Hội trường có 10 dãy ghế hoặc 20 dãy ghế, giải thích các bước giải :
Gọi số ghế ban đầu là x, x thuộc N* => ban đầu mỗi dãy ghế có 200/x ghế
=> Vì phải kê thêm 2 dãy ghế => Ta có x + 2 dãy ghế
=> Vì mỗi dãy phải ngồi thêm 2 người => mỗi dãy lại có : 200/x + 2 ghế
=> Số người đc ngồi là : ( x + 2 ) . ( 200/x + 2 ). Vì có 6 người k có ghế nên ( x + 2). ( 200/x + 2 ) +6= 270
=> ( x +2). ( 200/x + 2) = 264
=> ( x +2). ( 200 +2x ) = 264x
=> 2x2 + 400 + 204x = 264x
=> 2x2 - 60x + 4000 = 0
=> 2(x-10 ). ( x -20 ) = 0, Kết luận vậy từ đây ta có thể suy ra đc x thuộc { 10; 20 }
Cách 2:
Gọi x là số dãy ghế lúc đầu (Đk:x và x là ước của 250, dãy)
Số chỗ ngồi ở mỗi dãy lúc đầu: 250/x (chỗ)
Số dãy ghế lúc sau là x + 3 (dãy). Số chỗ ngồi lúc sau: 308/(x+3) (chỗ).
Vì mỗi dãy ghế phải kê thêm 1 chỗ ngồi nữa thì vừa đủ ta có PT:
308/(x+3)-250/x=1↔x^2-55x+750=0↔[█(x_1=30 (loại) vì 250 không chia hết cho 30@x_2=25 (nhận))┤
Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.
Cách 1:
Gọi x là số dãy ghế lúc đầu; y là số người trên mỗi dãy ghế lúc đầu (x,y>0)
Ta có tổng cộng 250 người nên x.y =250 (1)
Nếu thêm 3 dãy ghế tức x + 3 thì mỗi dãy còn lại phải xếp thêm 1 người tức y + 1
Ta có: (x+3).(y+1) = 250 (2)
Từ (1) và (2) ta có hệ:
Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.
Coi ban đầu có n dãy ghế ( \(n\in N\)*; n < 250 , \(n\inƯ\left(250\right)\))
Ban đầu mỗi dãy có số chỗ ngồi là : \(\frac{250}{n}\) ( chỗ )
Do có 308 người dự họp, btc kê thêm 3 dãy ghế, mỗi dãy thêm một chỗ ngồi nên ta có phương trình :
\(\left(\frac{250}{n}+1\right)\left(n+3\right)=308\)
Bạn giải PT là ra n = 25 (TMĐK) và mỗi dãy ghế có 250 / 25 = 10 ( chỗ ngồi ).
số ghế1 hàng số ghế 1 dãy tổng số ghế
dự tính X \(\dfrac{360}{x}\) 360
thực tế X+1 \(\left(\dfrac{360}{X}\right)+1\) 400
gọi số ghế của 1 hàng là x (dự tính)
=> số ghế của 1 dãy là \(\dfrac{360}{x}\)
thêm 1 hàng theo thực tế X+1
mỗi hàng thêm 1 ghế ( thêm 1 dãy) \(\left(\dfrac{360}{X}\right)+1\)
tổng số ghế thực tế là 400 nên ta có
\(\left(x+1\right).\left(\left(\dfrac{360}{X}\right)+1\right)=400\)
=> x=24
vậy số ghế của 1 hàng và 1 dãy ban đầu lần lượt là 24 và 15
Gọi số ghế ở mỗi hàng ban đầu là x (ghế, x > 0)
Gọi số hàng ghế trong phòng ban đầu là y (hàng, y < 50)
Ta có x nhân y = 240
Khi tăng số ghế và số hàng ta có (x + 1)(y + 3)= 315
Ta có hệ phương trình {x nhân y= 240
{y + 3x = 72
Giải hệ phương trình ta có y= 12; x= 20
Vậy số dãy ghế có trong phòng lúc đầu là 12 hàng.
Gọi số dãy ghế có trong phòng họp lúc đầu là x (x<50)
Lúc đầu mỗi dãy có \(\frac{240}{x}\)ghế
Vì lúc sau có 315 người tham dự nên phải kê thêm 3 dãy, mỗi dãy thêm 1 ghế
=> \(\left(\frac{240}{x}+1\right)\left(x+3\right)=315\Leftrightarrow240+\frac{720}{x}+x+3=315\)
\(\Leftrightarrow x-72+\frac{720}{x}=0\Leftrightarrow\frac{x^2-72x+720}{x}=0\Leftrightarrow x^2-72x+720=0\)
\(\Delta'=\left(-36\right)^2-720=576\)
=> x1= 60 (Loại), x2=12 (thỏa mãn)
Vậy trong phòng họp lúc đầu có 12 dãy ghế.
gọi số hàng ghế ban đầu là x ( hàng )( đk x>0)
\(\Rightarrow\)số hàng ghế sau khi thêm một hàng là x+1 ( hàng)
số ghế trên một hàng ban đầu là \(\frac{300}{x}\)(ghế)
số ghế trên một hàng sau khi thêm hai ghế và một hàng là \(\frac{357}{x+1}\)(ghế)
ta có phương trình : \(\frac{357}{x+1}\)=\(\frac{300}{x}\)+2
\(\Rightarrow\)357x =300x+300 +2x\(^2\)+2
\(\Leftrightarrow\)-2x\(^2\)+57x-302=0
\(\Leftrightarrow\)2x\(^2\)-57x+302=0
giải phương trình bậc hai
đối chiếu điều kiện
kết luận
Gọi số dãy ghế trong hội trường là x (x nguyên dương)
Số ghế của mỗi dãy ghế lúc đầu là 150/x
Số dãy ghế lúc sau là x + 2
Số ghế của mỗi dãy ghế lúc sau là
Đáp án: D
ban đầu hội trương có 12 dãy ghế because:
số người đến họp dư la 52 nguoi
52 nguoi ngoi 2 day ghe va them 2 cai
50 nguoi 2 day ghe
1 day ghe 25 nguoi
day ghe ban dau hoi truong la 300/25=12 day ghe