cho hình lăng trụ ABCDA'B'C'D' đáy là hình thoi cạnh A tâm O, góc ABC=120°. góc giữa AA' và đáy là 60°. A' cách đều A,B,D. Tính thể tích ABCDA'B'C'D'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Ta có: A B C ^ = 120 ∘ ⇒ B A D ^ = 60 ∘ suy ra tam giác ABD là tam giác đều cạnh a. Khi đó A’.ABD là chóp đều cạnh đáy bằng a. Như vậy hình chiếu vuông góc của A’ lên mặt đáy trùng với trọng tâm tam giác ABD.
Ta có: A ' H = HA tan 60 ∘ = a 3 3 . 3 = a
⇒ V A ' A B D = 1 3 A ' H . S A B C = a 3 3 12
Do đó V A B C D . A ' B ' C ' D ' = 3 V A ' . A B C D = 6 V A ' A B D = a 3 3 2 .
Đáp án C
Ta có: A B C ^ = 120 ∘ ⇒ B A D ^ = 60 ∘ suy ra tam giác ABD là tam giác đều cạnh a. Khi đó A’.ABD là chóp đều cạnh đáy bằng a. Như vậy hình chiếu vuông góc của A’ lên mặt đáy trùng với trọng tâm tam giác ABD.
Đáp án A
A ' C ; ( A ' B ' C ' = A ' C ; A ' C ' = ∠ C A ' C ' = 60 0 C C ' = A ' C ' . tan 60 0 = a 3 V A B C . A ' B ' C ' = C C ' . S A ' B ' C ' = a 3 a 2 3 4 = 3 a 3 4