Cho tam giác ABC vuông cân tại A, M là trung điểm BC. Lấy điểm D bất kì thuộc cạnh BC. H và I thứ tự là hình chiếu của B và C xuống đường thẳng AD. Đường thẳng AM cắt CI tại N. Chứng minh rằng:
a) BH = AI.
b) BH^2 + CI^2 = 2AM^2
c) IM là phân giác của góc HIC
Ta có tam giác vuông ABH = CAI (c.h-g.n) => BH = AI
Áp dụng Pytago trong tam giác vuông ACI có:
AC² = AI² + IC² hay AC² = BH² + IC²
Đặt AB = AC = a; áp dụng Pytago trong tam giác vuông ABC ta có BC² = 2a²
Vậy BC²/( BH² + CI²) = BC²/ AC² = 2a²/a² = 2