Cho hình chóp S.ABCD có đáy ABCD là hình vuông, \(BD=2a\), tam gicacs SAC vuông tại S và nằm trong mặt phẳng vuông góc với đáy. \(SC=a\sqrt{3}\). Tính theo a thể tích khối chóp S.ABCD và khoảng cách từ điểm B đến mặt phẳng (SAD)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Kẻ SH ⊥ AC, H ∈ AC
Do (SAC) ⊥ (ABCD) ⇒ SH ⊥ (ABCD)
+ BD = 2a ⇒ AC = 2a
SA = A C 2 − S C 2 = 2 a 2 − a 3 2 = a ; SH = S A . S C A C = a . a 3 2 a = a 3 2
Ta có: AH = S A 2 − S H 2 = a 2 − a 3 2 2 = a 2 ⇒ AC = 4AH
Lại có: HC ∩ (SAD) = A d C ; S A D d H ; S A D = A C A H = 4
⇒ d(C; (SAD)) = 4d(H; (SAD))
Do BC // (SAD) (BC//AD) ⇒ d(B; (SAD)) = d(C; (SAD))
Do đó d(B; (SAD)) = 4d(H; (SAD))
+ Kẻ HK ⊥ AD tại K, kẻ HJ ⊥ SK tại J
Ta chứng minh được HJ ⊥ (SAD) ⇒ d(H; (SAD)) = HJ
⇒ d(B; (SAD)) = 4HJ
+ Tính HJ
Tam giác AHK vuông tại K có H A K ^ = C A D ^ = 45 ° ⇒ HK = AH.sin 45 ° = a 2 4
Mặt khác: 1 H J 2 = 1 H K 2 + 1 S H 2 ⇒ HJ = a 21 14
Vậy d(B; (SAD)) = 4 . a 21 14 = 2 a 21 7 .
Đáp án C
Vẽ S H ⊥ A C tại H.
Khi đó: ( S A C ) ⊥ ( A B C D ) ( S A C ) ⊥ ( A B C D ) = A C S H ⊂ ( S A C ) S H ⊥ A C
⇒ S H ⊥ ( A B C D ) ⇒ V = 1 3 S H . S A B C D
Theo đề ∆ S A C vuông tại S nên ta có:
S C = A C 2 - S A 2 = 6 a 2
và S H = S A . S C A C
= 2 a 2 . 6 a 2 2 a = 6 a 4
Vậy V = 1 3 S H . S A B C D = 6 a 3 12
Chọn đáp án A.
\(d\left(M,BN\right)=\frac{\left|13\left(-1\right)-10.2+13\right|}{\sqrt{13^2+10^2}}=\frac{20}{\sqrt{269}}\)
\(H\in\Delta\Leftrightarrow H\left(3a;2a\right)\)
Gọi I là tâm ABCD, G là giao điểm của AC và BN. Ta thấy G là trọng tâm của tam giác BCD
Suy ra \(CG=\frac{2}{3}.CI=\frac{1}{3}AC\) mà \(AM=\frac{1}{4}AC\Rightarrow MG=\frac{5}{12}AC\Rightarrow CG=\frac{4}{5}MG\)
\(\Rightarrow d\left(C,BN\right)=\frac{4}{5}d\left(M,BN\right)=\frac{16}{\sqrt{269}}\Rightarrow d\left(H,BN\right)=2d\left(C,BN\right)=\frac{32}{\sqrt{269}}\)
\(\Leftrightarrow\frac{\left|13.3a-10.2a+13\right|}{\sqrt{269}}=\frac{32}{\sqrt{269}}\Leftrightarrow a=1\) hoặc \(a=\frac{-45}{19}\)
Vì H và M nằm khác phía đối với đường thẳng BN nên \(H\left(3;2\right)\)
Tiếp.........
Ta thấy \(CM=\frac{3AC}{4}=\frac{2AB}{4}=\frac{2CD}{4}=\frac{CD}{2}=CD=CH\Rightarrow\Delta MHN\) vuông tại M
HM có phương trình \(y-2=0\Rightarrow MN:x+1=0\Rightarrow N\left(-1;0\right)\Rightarrow C\left(1;1\right),D\left(-3;-1\right)\)
Do \(\overrightarrow{CM}=3\overrightarrow{MA}\Rightarrow A\left(\frac{-5}{3};\frac{7}{3}\right)\Rightarrow I\left(\frac{-1}{3};\frac{5}{3}\right)\Rightarrow B\left(\frac{7}{3};\frac{13}{3}\right)\)
Vậy \(A\left(\frac{-5}{3};\frac{7}{3}\right);B\left(\frac{7}{3};\frac{13}{3}\right);C\left(1;1\right);D\left(-3.-1\right)\)