Trong mặt phẳng hệ tọa độ Oxy, cho hình vuông ABCD và điểm E thuộc cạnh BC. Một đường thẳng qua A vuông góc với AE cắt CD tại F. Đường thẳng chứa đường trung tuyến AM của tam giác AEF cắt CD tại K. Tìm tọa độ điểm D biết A(-6;6). M(-4;2) và K(-3;0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo lời giải ở đường link sau nhé:
Câu hỏi của Thới Nguyễn Phiên - Toán lớp 8 - Học toán với OnlineMath
Ta có
góc FAD+DAE=90•
DAE+EAB=90•
-> FAD=EAB
xet tam giác AEB và tam giác ADF có
AB=AD( ABCD là hình vuông)
ABE=ADF=90•
FAD=EAB
suy ra tam giac ABE=tam giác ADF(g.c.g)
-> AF=AE
Bài làm
Ta có Qua E kẻ đường thẳng với AB cắt AD tại H.
a)Ta có DAEˆ+FADˆ=90o
Xét trong tam giác vuông tại H(do EH//AB=>HE vuông góc với AD)
Có DAEˆ=AEHˆ=90o
=>AEHˆ=FADˆ.
Xét tam giác HAE và tam giác DFA có:
HE=AD(do HE=AB(c/m dễ dàng))
ADFˆ=EHAˆ=90o
AEHˆ=FADˆ(c/m trên)
=>Tam giác HAE=Tam giác DFA(cạnh huyền-góc nhọn)
=>AE=FA.
Ta có AE=FA=>Tam giác AFE vuông cân tại A
=>AI vừa là trung tuyến cũng vừa là đường vuông góc! xuất phát từ đỉnh.
Từ đây =>FE vuông góc với GK kết hợp với IF=IE,AE//DC(do AB//DC)
Dễ dàng chứng mình được AEKF là hình thoi.
b)Xem lại đề nhé AEF không thể đồng dạng với CAF do CFAˆ=AFEˆ+EFCˆ.
Ta có AC là đường chéo nên cũng là Phân giác của góc đó luôn.
Nên ta có DAKˆ+KACˆ=45o
Ta cũng có AK là phân giác trong tam giác vuông cân tại đỉnh A.
=>KACˆ+CAEˆ=45o
=>CAEˆ=DAKˆ.
Ta xét trong tam giác vuông ADK tại D.
Có AKDˆ+DAKˆ=90o
MÀ FACˆ+EACˆ=90o
hay FACˆ+DAKˆ=90o
=>FACˆ=AKDˆ
Xét hai tam giác AFK và tam giác CFA có:
AFCˆ chung
FACˆ=AKDˆ(c/m trên)
=>Tam giác AFK đồng dạng với tam giác CFA
=>AFFK=CFAF
=>AF2=CF.FK
Bài làm
Ta có Qua E kẻ đường thẳng với AB cắt AD tại H.
a)Ta có DAEˆ+FADˆ=90o
Xét trong tam giác vuông tại H(do EH//AB=>HE vuông góc với AD)
Có DAEˆ=AEHˆ=90o
=>AEHˆ=FADˆ.
Xét tam giác HAE và tam giác DFA có:
HE=AD(do HE=AB(c/m dễ dàng))
ADFˆ=EHAˆ=90o
AEHˆ=FADˆ(c/m trên)
=>Tam giác HAE=Tam giác DFA(cạnh huyền-góc nhọn)
=>AE=FA.
Ta có AE=FA=>Tam giác AFE vuông cân tại A
=>AI vừa là trung tuyến cũng vừa là đường vuông góc! xuất phát từ đỉnh.
Từ đây =>FE vuông góc với GK kết hợp với IF=IE,AE//DC(do AB//DC)
Dễ dàng chứng mình được AEKF là hình thoi.
b)Xem lại đề nhé AEF không thể đồng dạng với CAF do CFAˆ=AFEˆ+EFCˆ.
Ta có AC là đường chéo nên cũng là Phân giác của góc đó luôn.
Nên ta có DAKˆ+KACˆ=45o
Ta cũng có AK là phân giác trong tam giác vuông cân tại đỉnh A.
=>KACˆ+CAEˆ=45o
=>CAEˆ=DAKˆ.
Ta xét trong tam giác vuông ADK tại D.
Có AKDˆ+DAKˆ=90o
MÀ FACˆ+EACˆ=90o
hay FACˆ+DAKˆ=90o
=>FACˆ=AKDˆ
Xét hai tam giác AFK và tam giác CFA có:
AFCˆ chung
FACˆ=AKDˆ(c/m trên)
=>Tam giác AFK đồng dạng với tam giác CFA
=>AFFK=CFAF
=>AF2=CF.FK
tốp scorer ơi,mình không hiểu phần kẻ thêm ở đàucủa bạn, bạn có hình ko
chỉnh lại câu 1 tí:
1)
+ Xét tứ giác AEFD : ADF +AEF = 90 +90 = 180
Suy ra: Tứ giác AEFD nội tiếp được đường tròn
Suy ra: EAF = EDF hay EAF = EDC
+ Xét tgAEF và tg EDC : AEF = ECD = 90 VÀ EAF = EDC
Suy ra: tgAEF ~ tgDCE => .AE /AF = CD/DE
2.
Tứ giác AEFD nội tiếp được đường tròn
=> EAF = EDF mặt khác EAF = EDC mặt khác : EAF + HAG = 90 VÀ EDC + HEG =90
suy ra: HAG = HEG suy ra tứ giác AEGH nội tiếp được đường tròn => HGE = 90
Vì HGE = HAE = 90 ,suy ra đường tròn này có tâm O là trung điểm của AE.
3.
Đường tròn ngoại tiếp tam giác AHE chính là đường tròn (O).
+ Xét tam giác HGE : và OH = OE = 1/2. HE => OH = OE = OG.
+ Xét tg OEK và tg OGK :
OE = OG ; OK chung ;EK = GK( Vì K thuộc đường trung trực của đoạn thẳng EG)
Suy ra tgOEK =tg OGK (c – c – c) => KGO = KEO = 90 độ
Suy ra: KG vuông góc với OG, vậy KG là tiếp tuyến của đường tròn ngoại tiếp tam giác HAE.(đpcm).
Có 2 tam giác vuông \(\Delta ABE=\Delta ADF\) vì \(AB=AD\) và \(\widehat{BAE}=\widehat{DAF}\) cùng phụ với \(\widehat{DAE}\)
Suy ra tam giác AEF vuông cân và \(ME=MA=MF\Rightarrow AM\perp EF\)
Ta có \(\overrightarrow{MA}=\left(2;-4\right)\), đường thẳng EF đi qua M có phương trình :
\(2\left(x+4\right)-4\left(y-2\right)=0\Leftrightarrow x-2y+8=0\)
Bây giờ tìm tọa độ các điểm E, F thỏa mãn ME=MA=MF. Gọi T(x;y) thuộc đường thẳng EF, thì x=2t-8; y=t, \(t\in R\)
Khi đó \(MT=MA\Leftrightarrow\left(2t-8+4\right)^2+\left(1-2\right)^2=2^2+\left(-4\right)^2=20\)
\(\Leftrightarrow5\left(t-2\right)^2=20\Leftrightarrow t\left(t-4\right)=0\Leftrightarrow\)\(\begin{cases}t=0\\t=4\end{cases}\)
Như vậy có 2 điểm \(t_1\left(-8;0\right);t_2\left(0;4\right)\) ( Chính là 2 điểm E và F) thuộc đường thẳng EF mà \(MT_1=MA\)
- Trường hợp \(E\left(-8;0\right);F\left(0;4\right)\). Do F thuộc đường thẳng CD nên đường thẳng CD nhận \(\overrightarrow{KF}=\left(3;4\right)\) làm vec tơ chỉ phương.
Phương trình đường thẳng CD là \(\begin{cases}x=3t\\y=4+4t\end{cases}\) (\(t\in R\)).
Khi đó \(D\left(3t;4+4t\right)\)
Ta có \(AD\perp KF\Leftrightarrow\overrightarrow{KF}.\overrightarrow{AD}=0\Rightarrow3\left(3t+6\right)+4\left(-2+4t\right)=0\Leftrightarrow t=-\frac{2}{5}\Rightarrow D\left(-\frac{6}{5};\frac{12}{5}\right)\)
- Trường hợp \(F\left(-8;0\right);E\left(0;4\right)\), đường thẳng CD nhận \(\overrightarrow{FK}=\left(5;0\right)\) làm vec tơ chỉ phương
Phương trình CD : \(\begin{cases}x=-8+5t\\y=0\end{cases}\) \(\left(t\in R\right)\)
Khi đó \(D\left(-8+5t;0\right)\)
Ta có \(AD\perp KF\Leftrightarrow\overrightarrow{FK}.\overrightarrow{AD}=0\Leftrightarrow5\left(-2+5t\right)=0\Leftrightarrow t=\frac{2}{5}\Rightarrow D\left(-6;0\right)\)
a