a, Tính tổng S=1-3+3^2-3^3+3^4+...+3^100.
b, Chứng minh rằng:a^3-13a chia hết cho 6.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^3-a-12a=a(a^2-1)-12a=a(a+1)(a-1)-12a (1)
ta có a(a+1)(a-1) chia hết cho 6
12 chia hết cho 6
nên (1) chia hết cho 6
suy ra a^3-13a chia hết cho 6
Ta gọi
\(A\)\(=3+3^2+3^3+3^4+....+3^{100}\)
\(3A=3\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(=3^2+3^3+3^4+3^5+....+3^{101}\)
\(3A-A\)\(=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(2A=3^2+3^3+3^4+3^5+...+3^{101}-3-3^2-3^3-3^4-....-3^{100}\)
\(=3^{101}-3\)
\(S=1+3^{101}-3\)
s = 3 ^0 + 3 ^ 2 + 3^ 4+ 3 ^6 +... + 3 ^2002
9S = 3 ^4 + 3^6 + 3 ^ 2004
9S - S= 3 ^ 2004 - 1
8S = 3^2004 - 1
S = 3 ^ 2004 - 1/8
k mk nha
cho tổng :S=3^0+3^2+3^4+3^6+...........................+3^2014.tính S và chứng minh S chia hết cho 7
\(S=3^0+3^2+3^4+3^6+...+3^{2014}\)
\(=1+3^2+3^4+3^6+...+3^{2014}\)
\(=\left(1+3^2\right)+3^4\left(1+3^2\right)+...+3^{2012}\left(1+3^2\right)\)
\(=7+3^4.7+...+3^{2012}.7=7\left(1+3^4+...+3^{2012}\right)⋮7\)
Vậy ta có đpcm
a)
ta có : 3S=3^2+3^3+......+3^101
=> 3S-S=(3^2+3^3+....+3^101)-(3+3^2+...+3^100)
=> 2S=3^101-3
=> S=(3^101-3):2
b) S=(3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+......+(3^97+3^98+3^99+3^100)
=>S=120+3^4*(3+3^2+3^3+3^4)+......+3^96(3+3^2+3^3+3^4)
=>S=24*5+3^4*24*5+....+3^96*24*5
=>S chia hết cho 5
xong rồi bạn nhé
bạn ghi nhớ cách làm này rồi vận dụng vào bài khác nhé
a,S = 3 + 32 + 33 + ...+ 3100
S = 3(3 + 32 + 33 + ...+ 3100 )
3S = 32 + 33 + 34 + ... + 3101
3S-S = (32 + 33 + 34 + ... + 3101 ) - (3 + 32 + 33 + ...+ 3100 )
2S = 32 + 33 + 34 + ... + 3101 - 3 - 32 - 33 - ...- 3100
2S= 3101 - 3
S= (3101 - 3 ) :2
b, S = 3 + 32 + 33 + ...+ 3100
S= ( 3+32 + 33 + 34) + (35 + 36 + 37 + 38 ) + ... + (397 + 398 + 399 + 3100 )
S = 120 + 35(3+32 + 33+ 34) + ... + 397(3+32+ 33 + 34 )
S = 120 + 35 .120 + ... + 397.120
S = 5.(24+35.24 + ...+ 397 . 24 )
=> S chia hết cho 5
a. Nhân 2 vế của S với 3 rồi cộng S và 3S. Rút gọn sẽ ra kết quả