cho\(\left\{{}\begin{matrix}x,y,z>0\\xy+yz+zx=1\end{matrix}\right.\)
tìm GTNN của P=13x2+12y2+22z2
giúp em giải bằng"phương pháp cân bằng hệ số" với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\left(1\right)\\y^2+xy-yz+z^2=0\left(2\right)\\x^2-xy-xz-z^2=2\left(3\right)\end{matrix}\right.\)
Lấy (2) cộng (3) ta được
\(x^2+y^2-yz-zx=2\) (4)
Lấy (1) - (4) ta được
\(2x\left(x+z\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-z\end{matrix}\right.\)
Xét 2 TH rồi thay vào tìm được y và z
1. \(\left\{{}\begin{matrix}6xy=5\left(x+y\right)\\3yz=2\left(y+z\right)\\7zx=10\left(z+x\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{6}{5}\\\dfrac{y+z}{yz}=\dfrac{3}{2}\\\dfrac{z+x}{zx}=\dfrac{7}{10}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{6}{5}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{3}{2}\\\dfrac{1}{z}+\dfrac{1}{x}=\dfrac{7}{10}\end{matrix}\right.\)
Đến đây thì dễ rồi nhé
\(A\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{1}{2}\left(x+y+z\right)\ge\dfrac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\dfrac{1}{2}\)
\(A_{min}=\dfrac{1}{2}\) khi \(x=y=z=\dfrac{1}{3}\)
\(\left\{{}\begin{matrix}xy=x+y+1\\yz=y+z+5\\zx=z+x+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}xy-x-y-1=-2\\yz-y-z-1=4\\zx-z-x-1=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-1\right)=-2\\\left(y-1\right)\left(z-1\right)=4\\\left(z-1\right)\left(x-1\right)=1\end{matrix}\right.\)
\(\left\{\begin{matrix}x+xy+y=1\\y+yz+z=3\\z+zx+x=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}\left(x+1\right)\left(y+1\right)=2\left(1\right)\\\left(y+1\right)\left(z+1\right)=4\left(2\right)\\\left(z+1\right)\left(x+1\right)=8\left(3\right)\end{matrix}\right.\)
Lấy 2(1) - (2) ta được
\(2\left(x+1\right)\left(y+1\right)-\left(y+1\right)\left(z+1\right)=0\)
\(\Leftrightarrow\left(y+1\right)\left(2x-z+1\right)=0\)
\(\Leftrightarrow\left\{\begin{matrix}y=-1\\z=2x+1\end{matrix}\right.\)
Với y = -1 thì hệ vô nghiệm
Với z = 2x + 1 thì thế vô 3 được
\(\left(x+1\right)^2=4\)
\(\Leftrightarrow\left[\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Với x = 1 thì
\(\Rightarrow\left\{\begin{matrix}y=0\\z=3\end{matrix}\right.\)
Với x = - 3 thì
\(\Rightarrow\left\{\begin{matrix}y=-2\\z=-5\end{matrix}\right.\)
\(\left\{\begin{matrix}x+xy+y=1\left(1\right)\\y+yz+z=3\left(2\right)\\z+zx+x=7\left(3\right)\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x\left(y+1\right)+\left(y+1\right)=2\\y\left(z+1\right)+\left(z+1\right)=4\\z\left(x+1\right)+\left(x+1\right)=8\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}\left(y+1\right)\left(x+1\right)=2\left(1\right)\\\left(z+1\right)\left(y+1\right)=4\left(2\right)\\\left(x+1\right)\left(z+1\right)=8\left(3\right)\end{matrix}\right.\)(II)
Nhân theo vế: \(\left(x+1\right)^2\left(y+1\right)^2\left(z+1\right)^2=2.4.8=64\)
\(\Leftrightarrow\left[\begin{matrix}\left(x+1\right)\left(y+1\right)\left(z+1\right)=-8\left(5\right)\\\left(x+1\right)\left(y+1\right)\left(z+1\right)=8\left(6\right)\end{matrix}\right.\)
(5) và (II) \(\Leftrightarrow\left\{\begin{matrix}z+1=-4\\x+1=-2\\y+1=-1\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}z=-5\\x=-1\\y=-2\end{matrix}\right.\)
(6)và(II)\(\Leftrightarrow\left\{\begin{matrix}z+1=4\\x+1=2\\y+1=1\end{matrix}\right.\) \(\Leftrightarrow\left\{\begin{matrix}z=3\\x=1\\y=0\end{matrix}\right.\)
ĐK:: x,y,z\(\ne0\)
\(\left\{{}\begin{matrix}x+y+z=9\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=1\\xy+yz+zx=27\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y+z=9\\xy+yz+zx=xyz\\xy+xz+yz=27\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x+y+z=9\\xyz=27\\xy+yz+xz=27\end{matrix}\right.\)
Coi x;y;z là ba nghiệm x1;x2;x3 của một phương trình bậc ba. Theo công thức Vi-ét ta có: \(\left\{{}\begin{matrix}x_1+x_2+x_3=9\\x_1x_2+x_2x_3+x_3x_1=27\\x_1x_2x_3=27\end{matrix}\right.\)
Suy ra x1;x2;x3 là ba nghiệm của phương trình
\(X^3-9X^2+27X-27=0\Leftrightarrow\left(X-3\right)^3=0\Leftrightarrow X=3\)
Vậy (x;y;z)=(3;3;3)
hpt \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+y}{xy}=\dfrac{1}{2}\\\dfrac{y+z}{yz}=\dfrac{1}{4}\\\dfrac{z+x}{xz}=\dfrac{1}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\\\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{4}\\\dfrac{1}{x}+\dfrac{1}{z}=\dfrac{1}{3}\end{matrix}\right.\) ( đk : x , y , z # 0 )
Cộng từng vế của các pt lại với nhau , ta có :
\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{13}{12}\)
\(\Leftrightarrow\dfrac{1}{x}=\dfrac{13}{24}-\left(\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{13}{24}-\dfrac{1}{4}=\dfrac{7}{24}\)
\(\Leftrightarrow x=\dfrac{24}{7}\left(tm\right)\)
\(\Rightarrow y=\dfrac{24}{5}\left(tm\right);z=8\left(tm\right)\)