Giải phương trình :
\(\log_2x+\log_5\left(2x+1\right)=2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện x>0. Nhận thấy x=2 là nghiệm.
Nếu x>2 thì
\(\frac{x}{2}>\frac{x+2}{4}>1\); \(\frac{x+1}{3}>\frac{x+3}{5}>1\)
Suy ra
\(\log_2\frac{x}{2}>\log_2\frac{x+2}{4}>\log_4\frac{x+2}{4}\)hay :\(\log_2x>\log_2\left(x+2\right)\)
\(\log_3\frac{x+1}{3}>\log_3\frac{x+3}{5}>\log_5\frac{x+3}{5}\) hay \(\log_3\left(x+1\right)>\log_5\left(x+3\right)\)
Suy ra vế trái < vế phải, phương trình vô nghiệm.
Đáp số x=2
ĐK: \(x\ge3\)
ta có:
\(\log_5^{\left(x+5\right)^{\frac{1}{2}}}+\log_5^{\sqrt{x-3}}=\log_5^{\sqrt{2x+1}}\Rightarrow\log_5^{\sqrt{\left(x+5\right)\left(x-3\right)}}=\log_5^{\sqrt{2x+1}}\)
suy ra \(\sqrt{\left(x+5\right)\left(x-3\right)}=\sqrt{2x+1}\Rightarrow\left(x+5\right)\left(x-3\right)=2x+1\Leftrightarrow x^2+2x-15=2x+1\Leftrightarrow x^2=16\Rightarrow x=\pm4\)
mà \(x\ge3\)
suy ra x=4 là nghiệm của pt
ĐKXĐ: \(x;y>0\)
\(log_2x=-\dfrac{1}{3}log_2y\Rightarrow log_2x=log_2y^{-\dfrac{1}{3}}\)
\(\Rightarrow x=y^{-\dfrac{1}{3}}=\dfrac{1}{\sqrt[3]{y}}\Rightarrow y=\dfrac{1}{x^3}\)
Thế vào pt dưới: \(3^x+3^{\dfrac{1}{x^3}}=4\)
- Với \(x\ge1\Rightarrow\left\{{}\begin{matrix}3^x\ge3^1=3\\\dfrac{1}{x^3}>0\Rightarrow3^{\dfrac{1}{x^3}}>1\end{matrix}\right.\) \(\Rightarrow3^x+3^{\dfrac{1}{x^3}}>4\) pt vô nghiệm
- Với \(0< x< 1\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x^3}>1\Rightarrow3^{\dfrac{1}{x^3}}>3\\3^x>1\end{matrix}\right.\) \(\Rightarrow3^x+3^{\dfrac{1}{x^3}}>4\) pt vô nghiệm
Vậy hệ đã cho vô nghiệm
ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\7^x\ge m\end{matrix}\right.\)
\(\left[{}\begin{matrix}4log_2^2x+log_2x-5=0\\7^x-m=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x_1=2\\x_2=2^{-\dfrac{5}{4}}\\7^x=m\end{matrix}\right.\)
Với \(m\le0\) thì pt đã cho luôn có đúng 2 nghiệm
Vậy không cần xét tiếp, hiển nhiên là có vô số giá trị thực của m rồi?
Điều kiện x>0. Nhận thấy x=2 là nghiệm
- Nếu x>2 thì : \(\log_2x>\log_22=1;\log_5\left(2x+1\right)>\log_5\left(2.2x+1\right)=1\)
Suy ra phương trình vô nghiệm.
Tương tự khi 0<x<2
Đáp số x=2