K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 3 2016

a) Điều kiện \(x-4>0\Leftrightarrow x>4\)

Đặt \(f\left(x\right)=lg\left(x-4\right),g\left(x\right)=5-x\)

Phương trình đã cho trở thành

\(f\left(x\right)=g\left(x\right)\)

Ta có \(f\left(x\right)\) đồng biến trên \(\left(4;+\infty\right)\) và \(g\left(x\right)\) nghịch biến trên R

Hơn nữa \(f\left(5\right)=g\left(5\right)\) do đó \(x=5\) là nghiệm duy nhất của phương trình

b) Dễ thấy \(x=\sqrt{2}\) là nghiệm của phương trình.

Nếu \(x>\sqrt{2}\) thì \(x^x>\left(\sqrt{2}\right)^x>\left(\sqrt{2}\right)^{\sqrt{2}}\)

Tương tự  \(x<\sqrt{2}\) . Vậy \(x=\sqrt{2}\) là nghiệm duy nhất

 

28 tháng 3 2016

d) Điều kiện \(\begin{cases}x\ne0\\\log_2\left|x\right|\ge0\end{cases}\)\(\Leftrightarrow\left|x\right|\ge\)1

Phương trình đã cho tương đương với :

\(\log_2\left|x\right|^{\frac{1}{2}}-4\sqrt{\log_{2^2}\left|x\right|}-5=0\)

\(\Leftrightarrow\frac{1}{2}\log_2\left|x\right|-4\sqrt{\frac{1}{4}\log_2\left|x\right|}-5=0\)

Đặt \(t=\sqrt{\frac{1}{2}\log_2\left|x\right|}\) \(\left(t\ge0\right)\) thì phương trình trở thành :

\(t^2-4t-5=0\) hay t=-1 V t=5

Do \(t\ge0\) nên t=5

\(\Rightarrow\frac{1}{2}\log_2\left|x\right|=25\Leftrightarrow\log_2\left|x\right|=50\Leftrightarrow\left|x\right|=2^{50}\) Thỏa mãn

Vậy \(x=\pm2^{50}\) là nghiệm của phương trình

28 tháng 3 2016

c) Điều kiện x>0. Phương trình đã cho tương đương với :

\(x^{lg^2x^2-3lgx-\frac{9}{2}}=\left(10^{lgx}\right)^{-2}\)

\(\Leftrightarrow lg^2x^2-3lgx-\frac{9}{2}=-2\)

\(\Leftrightarrow8lg^2x-6lgx-5=0\)

Đặt \(t=lgx\left(t\in R\right)\) thì phương trình trở thành

\(8t^2-6t-5=0\)  hay\(t=-\frac{1}{2}\) V \(t=\frac{5}{4}\)

Với \(t=-\frac{1}{2}\) thì \(lgx=-\frac{1}{2}\Leftrightarrow x=\frac{1}{\sqrt{10}}\)

Với \(t=\frac{5}{4}\) thì \(lgx=\frac{5}{4}\Leftrightarrow x=\sqrt[4]{10^5}\)

Vậy phương trình đã cho có nghiệm \(x=\sqrt[4]{10^5}\) và \(x=\frac{1}{\sqrt{10}}\)

 
27 tháng 10 2020

a) \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)=4-x\)

ĐKXĐ : x ≥ 0

⇔ \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)=-\left(x-4\right)\)

⇔ \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)=-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)

⇔ \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)+\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)=0\)

⇔ \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}+x+2\right)=0\)

⇔ \(7\left(\sqrt{x}-2\right)=0\)

⇔ \(\sqrt{x}-2=0\)

⇔ \(\sqrt{x}=2\)

⇔ \(x=4\)( tm )

b) \(\frac{\sqrt{x}+5}{\sqrt{x}-4}=\frac{\sqrt{x}-2}{\sqrt{x}+3}\)

ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne16\end{cases}}\)

⇔ \(\left(\sqrt{x}+5\right)\left(\sqrt{x}+3\right)=\left(\sqrt{x}-4\right)\left(\sqrt{x}-2\right)\)

⇔ \(x+8\sqrt{x}+15=x-6\sqrt{x}+8\)

⇔ \(x+8\sqrt{x}-x+6\sqrt{x}=8-15\)

⇔ \(14\sqrt{x}=-7\)

⇔ \(\sqrt{x}=-2\)( vô lí )

=> Phương trình vô nghiệm 

Đề bài: Giải phương trình sau trên tập số thực:\(\sqrt{5x^{2}-14x+9}-\sqrt{x^{2}-x-20}=5\sqrt{x+1}\)Bài giải: Điều kiện \(x\geqslant 5\)Chuyển vế và bình phương hai vế phương trình ta có\(2x^{2}-5x+2=5\sqrt{\left ( x^{2}-x-20 \right )\left ( x+1 \right )}\) \(2x^{2}-5x+2=5\sqrt{\left ( x^{2}-4x-5 \right )\left ( x+4 \right )}\)Ta cần tìm các hằng số \(a,b\) sao cho\(a\left ( x^{2}-4x-5 \right )+b\left ( x+4 \right )=2x^{2}-5x+2\)Đồng nhất hai...
Đọc tiếp

Đề bài: Giải phương trình sau trên tập số thực:

\(\sqrt{5x^{2}-14x+9}-\sqrt{x^{2}-x-20}=5\sqrt{x+1}\)

Bài giải: Điều kiện \(x\geqslant 5\)

Chuyển vế và bình phương hai vế phương trình ta có

\(2x^{2}-5x+2=5\sqrt{\left ( x^{2}-x-20 \right )\left ( x+1 \right )}\)

 

\(2x^{2}-5x+2=5\sqrt{\left ( x^{2}-4x-5 \right )\left ( x+4 \right )}\)

Ta cần tìm các hằng số \(a,b\) sao cho

\(a\left ( x^{2}-4x-5 \right )+b\left ( x+4 \right )=2x^{2}-5x+2\)

Đồng nhất hai vế đẳng thức trên ta có hệ phương trình

\(\left\{\begin{matrix} a=2 & & \\ -4a+b=-5 & & \\ -5a+4b=2 & & \end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} a=2 & & \\ b=3 & & \end{matrix}\right.\)

Đặt \(u=\sqrt{x^{2}-4x-5}; v=\sqrt{x+4}\), ta có phương trình

\(2a^{2}+3b^{2}=5ab\Leftrightarrow \left ( a-b \right )\left ( 2a-3b \right )=0\)

TH1: \(a=b\) thì \(x=\frac{5+\sqrt{61}}{2}\)

TH2: \(2a=3b\) thì \(x=8\)

Vậy nghiệm của phương trình là \(x=8;x=\frac{5+\sqrt{61}}{2}\)

1

đây mà là toán lp 2 á đùa tôi đấy à

6 tháng 9 2016

Đề bạn sai câu b/

6 tháng 9 2016

thế c lm hộ t câu a vs