Giải phương trình :
a) \(lg\left(x-4\right)=5-x\)
b) \(x^x=2^{\frac{\sqrt{2}}{2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Điều kiện \(\begin{cases}x\ne0\\\log_2\left|x\right|\ge0\end{cases}\)\(\Leftrightarrow\left|x\right|\ge\)1
Phương trình đã cho tương đương với :
\(\log_2\left|x\right|^{\frac{1}{2}}-4\sqrt{\log_{2^2}\left|x\right|}-5=0\)
\(\Leftrightarrow\frac{1}{2}\log_2\left|x\right|-4\sqrt{\frac{1}{4}\log_2\left|x\right|}-5=0\)
Đặt \(t=\sqrt{\frac{1}{2}\log_2\left|x\right|}\) \(\left(t\ge0\right)\) thì phương trình trở thành :
\(t^2-4t-5=0\) hay t=-1 V t=5
Do \(t\ge0\) nên t=5
\(\Rightarrow\frac{1}{2}\log_2\left|x\right|=25\Leftrightarrow\log_2\left|x\right|=50\Leftrightarrow\left|x\right|=2^{50}\) Thỏa mãn
Vậy \(x=\pm2^{50}\) là nghiệm của phương trình
c) Điều kiện x>0. Phương trình đã cho tương đương với :
\(x^{lg^2x^2-3lgx-\frac{9}{2}}=\left(10^{lgx}\right)^{-2}\)
\(\Leftrightarrow lg^2x^2-3lgx-\frac{9}{2}=-2\)
\(\Leftrightarrow8lg^2x-6lgx-5=0\)
Đặt \(t=lgx\left(t\in R\right)\) thì phương trình trở thành
\(8t^2-6t-5=0\) hay\(t=-\frac{1}{2}\) V \(t=\frac{5}{4}\)
Với \(t=-\frac{1}{2}\) thì \(lgx=-\frac{1}{2}\Leftrightarrow x=\frac{1}{\sqrt{10}}\)
Với \(t=\frac{5}{4}\) thì \(lgx=\frac{5}{4}\Leftrightarrow x=\sqrt[4]{10^5}\)
Vậy phương trình đã cho có nghiệm \(x=\sqrt[4]{10^5}\) và \(x=\frac{1}{\sqrt{10}}\)
a) \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)=4-x\)
ĐKXĐ : x ≥ 0
⇔ \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)=-\left(x-4\right)\)
⇔ \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)=-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)
⇔ \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}\right)+\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)=0\)
⇔ \(\left(\sqrt{x}-2\right)\left(5-\sqrt{x}+x+2\right)=0\)
⇔ \(7\left(\sqrt{x}-2\right)=0\)
⇔ \(\sqrt{x}-2=0\)
⇔ \(\sqrt{x}=2\)
⇔ \(x=4\)( tm )
b) \(\frac{\sqrt{x}+5}{\sqrt{x}-4}=\frac{\sqrt{x}-2}{\sqrt{x}+3}\)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne16\end{cases}}\)
⇔ \(\left(\sqrt{x}+5\right)\left(\sqrt{x}+3\right)=\left(\sqrt{x}-4\right)\left(\sqrt{x}-2\right)\)
⇔ \(x+8\sqrt{x}+15=x-6\sqrt{x}+8\)
⇔ \(x+8\sqrt{x}-x+6\sqrt{x}=8-15\)
⇔ \(14\sqrt{x}=-7\)
⇔ \(\sqrt{x}=-2\)( vô lí )
=> Phương trình vô nghiệm
a) Điều kiện \(x-4>0\Leftrightarrow x>4\)
Đặt \(f\left(x\right)=lg\left(x-4\right),g\left(x\right)=5-x\)
Phương trình đã cho trở thành
\(f\left(x\right)=g\left(x\right)\)
Ta có \(f\left(x\right)\) đồng biến trên \(\left(4;+\infty\right)\) và \(g\left(x\right)\) nghịch biến trên R
Hơn nữa \(f\left(5\right)=g\left(5\right)\) do đó \(x=5\) là nghiệm duy nhất của phương trình
b) Dễ thấy \(x=\sqrt{2}\) là nghiệm của phương trình.
Nếu \(x>\sqrt{2}\) thì \(x^x>\left(\sqrt{2}\right)^x>\left(\sqrt{2}\right)^{\sqrt{2}}\)
Tương tự \(x<\sqrt{2}\) . Vậy \(x=\sqrt{2}\) là nghiệm duy nhất