Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt SAB là tam giác đều và nằm trong mặt phẳng vuông hóc với mặt phẳng đáy. Tính thể tích khối chóp S.ABCD và tính khoảng cách từ A đến mặt phẳng (SCD) theo a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là trung điểm AB \(\Rightarrow SH\perp\left(ABCD\right)\)
\(SH=\dfrac{AB\sqrt{3}}{2}=\dfrac{a\sqrt{6}}{2}\)
\(V=\dfrac{1}{3}SH.AB^2=\dfrac{1}{3}.\dfrac{a\sqrt{6}}{2}.2a^2=\dfrac{a^3\sqrt{6}}{3}\)
Đáp án D
Gọi H là trung điểm AB, do tam giác SAB đều nên SA ⊥ AB. Mặt khác mặt phẳng (SAB) vuông góc với mặt đáy nên SH là đường cao của chóp.
Ta có h = S H = a 3 2 , S A B C D = a 2
Vậy V = 1 3 . a 3 2 . a 2 = a 3 3 6
Đáp án C
Phương pháp: Thể tích khối chóp V = 1 3 S d a y . h
Cách giải: Gọi H là trung điểm của AB ta có: S H ⊥ A B và S H = a 3 2
Đáp án B.
Gọi I là trung điểm của A B ⇒ S I ⊥ A B ⇒ S I ⊥ ( A B C D ) .
Tam giác SAB đều cạnh a ⇒ S I = a 3 2 . Diện tích hình vuông ABCD là S A B C D = a 2 .
Vậy thể tích cần tính là V S . A B C D = 1 3 . S I . S A B C D = a 2 3 . a 3 2 = a 3 3 6 .
1) Gọi H là trung điểm của AB.
ΔSAB đều → SH ⊥ AB
mà (SAB) ⊥ (ABCD) → SH⊥ (ABCD)
Vậy H là chân đường cao của khối chóp.
2) Ta có tam giác SAB đều nên SA =a3√2
suy ra V=13SABCD.SH=a33√6