K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2016

A B C D M N P O b c

19 tháng 3 2016

Đặt \(\overrightarrow{AB}=\overrightarrow{b}\)\(\overrightarrow{AC}=\overrightarrow{c}\) 

Do B. M, C thẳng hàng theo thứ tự, nên tồn tại n, p > 0 sao cho \(\overrightarrow{AM}=n\overrightarrow{c}+p\overrightarrow{b}\) với \(n+p=1\)

Từ đó, do tứ giác ANMP là hình bình hành, nên \(\overrightarrow{AP}=p\overrightarrow{b}\)\(\overrightarrow{AN}=n\overrightarrow{c}\)

Do B, O, N thẳng hàng và C, O, P thẳng hàng nên 

\(\overrightarrow{AO}=x\overrightarrow{b}+ny\overrightarrow{c}=z\overrightarrow{c}+pt\overrightarrow{b}\)

trong đó \(x+y=1=z+t\)

Từ đó, do hai vectơ \(\overrightarrow{b},\overrightarrow{c}\) không cùng phương nên \(x=\frac{p\left(1-n\right)}{1-np}\) và \(y=\frac{1-p}{1-np}\)

Do đó :

\(\overrightarrow{AO}=\frac{p\left(1-n\right)}{1-np}.\overrightarrow{b}+\frac{n\left(1-p\right)}{1-np}.\overrightarrow{c}\)

Suy ra :

\(\left(1-np\right).\overrightarrow{OM}=\left(1-np\right)\left(\overrightarrow{AM}-\overrightarrow{AO}\right)=np\left(1-p\right)\overrightarrow{b}+np\left(1-n\right)\overrightarrow{c}\)

\(\Rightarrow\frac{1-np}{np}.\overrightarrow{OM}=\left(\overrightarrow{b}+\overrightarrow{c}\right)-\left(n\overrightarrow{c}+p\overrightarrow{b}\right)\)

Hay

\(\overrightarrow{AM}=np\overrightarrow{AD}+\left(1-np\right)\overrightarrow{AO}\)

Trong đó D là điểm thỏa mãn \(\overrightarrow{AD}=\overrightarrow{b}+\overrightarrow{c}\) Từ đó, đường thẳng OM luôn đi qua D cố định (D là đỉnh thứ tư của hình bình hàng ABDC)

 

19 tháng 3 2016

Gọi D là đỉnh thức tư của hình bình hành ABDC. Khi đó, O, M, D thẳng hàng.

Do giả thiết nên DB//MP, DC//MN. Từ đó, do O, M, D thẳng hàng, nên góc PMO = góc OMN <=> OM là phân giác góc PMN <=> DM là phân giác góc BDC

\(\Leftrightarrow\frac{MB}{MC}=\frac{DB}{DC}\)

Nhưng tứ  giác ABDC là một hình bình hành nên BD = AC, CD = AB

do đó : \(\frac{DB}{DC}=\frac{AC}{AB}\)

Vì vậy :

góc PMO bằng góc OMN   \(\Leftrightarrow\frac{MB}{MC}=\frac{AC}{AB}\)

Vậy với M là điểm trên cạnh BC sao cho \(\frac{MB}{MC}=\frac{AC}{AB}\)  (hay M đối xứng với chân phân giác trong góc BAC qua trung điểm cạnh BC) thì góc PMO bằng góc OMN => Điều cần chứng minh

 

19 tháng 3 2016

O A P B N C D M

20 tháng 11 2016

các đường thẳng qua F song song với BN và qua B song song với CP cắt nhau tại D 
a) CM : Tứ giác BDCP là hình bình hành 
b) CM : Tứ giác PNCD là hình thang 
c) CM : AM // ND và AM = ND

28 tháng 9 2019

a) Ta chứng minh A N = C M A N ∥ C M ⇒ A M C N  là hình bình hành.

Vì O là giao điểm của AC và BD, ABCD là hình chữ nhật nên O là trung điểm AC

Do ANCM là hình bình hành có AC và MN là hai đường chéo

 

⇒  O là trung điểm MN

b. Ta có: EM//AC nên E M D ^ = A C D ^ (2 góc so le trong)

NF//AC nên B N F ^ = B A C ^  (2 góc so le trong)

Mà A C D ^ = B A C ^  (vì AB//DC, tính chất hình chữ nhật)

⇒ E M D ^ = B N F ^

Từ đó chứng minh được  ∆ E D M   =   ∆ F B N   ( g . c . g )

⇒ E M = F N

 

Lại có EM//FN (vì cùng song song với AC)

Nên tứ giác ENFM là hình bình hành

c) Tứ giác ANCM là hình thoi Û AC ^ MN tại O Þ M, N lần lượt là giao điểm của đường thẳng đi qua O, vuông góc AC và cắt CD, AB.

Khi đó M và N là trung điểm của CD và AB.

d) Ta chứng minh được DBOC cân tại O ⇒ O C B ^ = O B C ^   v à   N F B ^ = O C F ^  (đv) Þ DBFI cân tại I Þ IB = IF  (1)

Ta lại chứng minh được DNIB cân tại I Þ IN = IB  (2)

Từ (1) và (2) Þ I là trung điểm của NF.

What cái gì vậy tui đăng câu hỏi cơ mà

19 tháng 12 2021

a) Tứ giác ACEH có

ˆACE=ˆEHA=900ACE^=EHA^=900(cùng nhìn AE)

=> tứ giác ACHE nội tiếp 

b) tứ giác ACHE nội tiếp 

=> ˆEAH=ˆHCEEAH^=HCE^(cùng chắn EH)

lại có ˆADF=ˆACFADF^=ACF^(cùng chắn AF)

mà ˆACF+ˆHCE=900ACF^+HCE^=900do ˆACE=900ACE^=900

=>ˆEAH+ˆADF=900EAH^+ADF^=900

=> DF⊥ABDF⊥AB

mà EH⊥ABEH⊥AB

=> DF//EHDF//EH

c)các bước chứng minh nè :

cm HOD=DCH (2 góc cùng nhìn DH)

thì => COHD nọi tiếp đường tròn thì đường tròn sẽ đi qau C H O D

25 tháng 3 2020

a) Tứ giác ACEH có

\(\widehat{ACE}=\widehat{EHA}=90^0\)(cùng nhìn AE)

=> tứ giác ACHE nội tiếp 

b) tứ giác ACHE nội tiếp 

=> \(\widehat{EAH}=\widehat{HCE}\)(cùng chắn EH)

lại có \(\widehat{ADF}=\widehat{ACF}\)(cùng chắn AF)

mà \(\widehat{ACF}+\widehat{HCE}=90^0\)do \(\widehat{ACE}=90^0\)

=>\(\widehat{EAH}+\widehat{ADF}=90^0\)

=> \(DF\perp AB\)

mà \(EH\perp AB\)

=> \(DF//EH\)

c)các bước chứng minh nè :

cm HOD=DCH (2 góc cùng nhìn DH)

thì => COHD nọi tiếp đường tròn thì đường tròn sẽ đi qau C H O D