Cho tam giac ABC có AD là đuong phân giác. Vē tia CE sao cho goc ACE va goc BAC so le trong. Ve tia CM là tia phân giac cua goc ACE.chung minh rang : a)AB//CE b) AD//CM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này có sẵn đk hểt rồi mà
a/ ta có góc BAC= góc ACE (gt)
mà 2 góc so le trong chỉ bằng khi hai cạnh tạo ra hai góc đó song song
=> AB//CE
b/ ta có góc BAC=góc ACE
mà góc DAC=1/2 góc BAC
góc AMC=1/2 góc ACE
=> góc DAC=góc ACM
mà 2 góc này nằm ở vị trí so le trong
=> AD//CM
tick cho mình nha bạn
a,Vì ACE và BAC là hai góc so le trong =>AB // CE ( tính chất hai đường thẳng song song)
b,Vì AD là phân giác của BAC=>BAD=DAC
Vì CM là phân giác của ACE=>ACM=MCE
Ta có : ACE=BAC(hai góc so le trong)
=> 1/2 ACE= 1/2 BAC
hay DAC=ACM
Mà hai góc này nằm ở vị trí so le trong => AD//CM
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Chúc bạn học tốt!
Hình đơn giản rồi nên em tự kẻ ra nhé!
a, Xét ΔABD và ΔACE có:
\(\widehat{AEC}\)=\(\widehat{ABD=90^o}\)(giả thiết)
AB=AC(2 cạnh bên Δ cân ABC)
\(\widehat{A}\) chung
=>ΔABD=ΔACE(g.c.g)(đpcm)
b, Vì AE=AD
và HE=HD
=>AH là đường trung trực của ED(đpcm)
c, Xét ΔDKC và ΔDBC có:
\(\widehat{BDC}\)=\(\widehat{KDC}\)=90o(gt)
BD=KD(gt)
DC là cạnh chung
=>ΔDKC=ΔDBC(c.g.c)
DBC=DKC(2 cạnh tương ứng) (1)
BH=CH
=>ΔHBC cân tại H
=>DBC=ECB(2 góc ở đáy Δ cân) (2)
Từ (1) và (2)=>ECB=DKC(đpcm)
Đây là mới làm theo đề trên câu hỏi thôi còn em xem lại đề nhé, hình như đề thiếu thì phải!