K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1) 

Trên AD lấy E sao cho AE = AB 

Xét ∆ACE và ∆ACB ta có : 

AC chung 

DAC = BAC ( AC là phân giác) 

AB = AE (gt)

=> ∆ACE = ∆ACB (c.g.c)

=> CE = CB (1)

=> AEC = ABC = 110°

Mà AEC là góc ngoài trong ∆EDC 

=> AEC = EDC + ECD ( Góc ngoài ∆ bằng tổng 2 góc trong không kề với nó)

=> ECD = 110 - 70 

=> EDC = 40°

Xét ∆ EDC : 

DEC + EDC + ECD = 180 °

=> CED = 180 - 70 - 40 

=> CED = 70° 

=> CED = EDC = 70° 

=> ∆EDC cân tại C 

=> CE = CD (2)

Từ (1) và (2) :

=> CB = CD (dpcm)

b) Ta có thể thay sao cho tổng 2 góc đối trong hình thang phải = 180°

22 tháng 2 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Đặt độ dài a = AB, b = BC, c = CD, d = AD

Gọi O là giao điểm 2 đường chéo AC và BD.

* Trong ∆ OAB, ta có:

OA + OB > a (bất đẳng thức tam giác) (1)

* Trong  ∆ OCD, ta có:

OC + OD > c (bất đẳng thức tam giác) (2)

Từ (1) và (2) suy ra:

OA + OB + OC + OD > a + c hay AC + BD > a + c (*)

* Trong ΔOAD, ta có: OA + OD > d (bất đẳng thức tam giác) (3)

* Trong  ∆ OBC, ta có: OB + OC > b (bất đẳng thức tam giác) (4)

Từ (3) và (4) suy ra:

OA + OB + OC + OD > b + d hay AC + BD > b + d (**)

Từ (*) và (**) suy ra: 2(AC + BD) > a + b + c + d

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Trong  ∆ ABC, ta có: AC < AB + BC = a + b (bất đẳng thức tam giác)

* Trong  ∆ ADC, ta có: AC < AD + DC = c + d (bất đẳng thức tam giác)

Suy ra: 2AC < a + b + c + d

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Trong  ∆ ABD, ta có: BD < AB + AD = a + d (bất đẳng thức tam giác)

* Trong  ∆ BCD, ta có: BD < BC + CD = b + c (bất đẳng thức tam giác)

Suy ra: 2BD < a + b + c + d

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Từ (5) và (6) suy ra: AC + BD < a + b + c + d