Chứng minh: tích bốn số tự nhiên liên tiếp cộng thêm 1 là bình phương của một đa thức có ba hạng tử
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi 4 số tự nhiên liên tiếp lần lượt là : \(n;\left(n+1\right);\left(\cdot n+2\right)\left(n+3\right)\)
ta có :
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)
\(=\left(n^2+3n\right)\left(n+1\right)\left(n+2\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\) (1)
đặt \(n^2+3n=t\) \(\left(t\in N\right)\) thì (1) = \(t\left(t+2\right)+1\)
\(=t^2+2t+1\)
\(=\left(t+1\right)=\left(n^2+3n+1\right)\)
\(\Rightarrow dpcm\)
Gọi các số tự nhiên đó lần lượt là x , x+1 , x+2 , x+3 (\(x\in N^{\text{*}}\) )
Xét \(A=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]+1\)
\(=\left(x^2+3x\right).\left(x^2+3x+2\right)+1=\left(x^2+3x\right).\left[\left(x^2+3x\right)+2\right]+1\)
\(=\left(x^2+3x\right)^2+2.\left(x^2+3x\right)+1=\left(x^2+3x+1\right)^2\)
=> A là bình phương của đa thức 3 hạng tử
Có: \(\left(x^2+3x+1\right)^2-1=\left(x^2+3x\right)\left(x^2+3x+2\right)=x\left(x+1\right)\left(x+2\right)\left(x+3\right).\)
Ngược lại:
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x+1\right)^2-1+1=\left(x^2+3x+1\right)^2\)là scp
Gọi bốn số tự nhiên liên tiếp là a,a+1,a+2,a+3
Đặt A =\(a\left(a+1\right)\left(a+2\right)\left(a+3\right)+1=a\left(a+3\right)\left(a+1\right)\left(a+2\right)+1=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)
Đặt a2+3a=t
=>\(A=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(a^2+3a+1\right)^2\)
Vậy...
Giả sử bốn số tự nhiên liên tiếp là: \(a-1;a;a+1;a+2\)\(\left(a\inℕ^∗\right)\)
Tích của bốn số đó cộng thêm 1 là: \(\left(a-1\right)a\left(a+1\right)\left(a+2\right)+1\)\(=\left(a-1\right)\left(a+2\right)a\left(a+1\right)+1\)\(=\left(a^2+a-2\right)\left(a^2+a\right)+1\)
Đặt \(a^2+a=x\)\(\Rightarrow\left(a^2+a-2\right)\left(a^2+a\right)+1=x\left(x-2\right)+1=x^2-2x+1=\left(x-1\right)^2\)là số chính phương
Gọi 4 số tự nhiên liên tiếp đó là : \(a,a+1,a+2,a+3\left(a\inℕ^∗\right)\)
Ta có :
\(a.\left(a+1\right).\left(a+2\right).\left(a+3\right)+1\)
\(=\left[a.\left(a+3\right)\right].\left[\left(a+1\right)\left(a+2\right)\right]+1\)
\(=\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)
\(=\left(a^2+3a\right)^2+2.\left(a^2+3a\right)+1\)
\(=\left(a^2+3a+1\right)^2\) là một số chính phương
\(\Rightarrowđpcm\)
2.
Gọi x;x+1;x+2;x+3 là 4 số tự nhiên liên tiếp ( x\(\in\) N)
Ta có : x (x+1) (x+2 ) (x+3 ) +1
=( x2 + 3x ) (x2 + 2x + x +2 ) +1
= ( x2 + 3x ) (x2 +3x + 2 ) +1 (*)
Đặt t = x2 + 3x thì (* ) = t ( t+2 ) + 1= t2 + 2t +1 = (t+1)2 = (x2 + 3x + 1 )2
=> x (x+1) (x+2 ) (x+3 ) +1 là số chính phương
hay tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương
Gọi 5 số tự nhiên liên tiếp là : k;k+1;k+2;k+3
Có k(k+1)(k+2)(k+3)+1
=k(k+3)(k+1)(k+2)+1
=(k2+3k)(k2+3k+2)+1
Đặt k2+3k=A
=A(A+2)+1
=A2+2A+1
=(A+1)2
ĐPCM
Goi 4 so tu nhien lien tiep la a+1 a+2 a+3 a+4
Ta co ( a+1)( a+4)( a+2)( a+3)+1
=(a^2+5a+5-1)(a^2+5a+5+1)+1
=(a^2+5a+5)^2-1^2+1
=(a^2+5a+5)^2