Tìm m để hệ sau có nghiệm duy nhất
\(\begin{cases}\left(m-1\right)x^2+3x+1=0\\mx^2-2x+5<0\end{cases}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\left(m-1\right)x-y=2\\mx+y=m\end{cases}}\) ( \(m\ne0;m\ne1\))
\(\Leftrightarrow\hept{\begin{cases}mx-x-y=2\\mx=m-y\end{cases}\Leftrightarrow\hept{\begin{cases}m-2y-x=2\\y=m-mx\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=m-m\left(m-2y-2\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=3m-m^2+2my\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=\frac{3m-m^2}{1-2m}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-m-2}{1-2m}\\y=\frac{3m-m^2}{1-2m}\end{cases}}\)
Theo bài ra ta có : 2x + y < 0 \(\Leftrightarrow\frac{2\left(-m-2\right)}{1-2m}+\frac{3m-m^2}{1-2m}< 0\)
\(\Leftrightarrow\frac{-m^2+m-4}{1-2m}< 0\Leftrightarrow\frac{-\left(m-\frac{1}{2}\right)^2-\frac{15}{4}}{1-2m}< 0\)
Ta có : \(-\left(m-\frac{1}{2}\right)^2-\frac{15}{4}< 0\)\(\Rightarrow1-2m< 0\Rightarrow m>\frac{1}{2}\)
Vậy \(m>\frac{1}{2}\left(m\ne1\right)\)
\(2)mx^2-2\left(m-1\right)x+m-1=0\)
Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow m=1\)
Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)
\(\begin{cases}\left(m-1\right)x^2+3x+1=0\\mx^2-2x+5<0\end{cases}\) (1)
\(\begin{cases}\left(m-1\right)x^2+3x+1=0\\mx^2-2x+5<0\end{cases}\) \(\Leftrightarrow\) \(\begin{cases}mx^2=x^2-3x-1\\x^2-3x-1-2x+5<0\end{cases}\)
\(\Leftrightarrow\) \(\begin{cases}f\left(x\right):=\left(m-1\right)x^2+3x+1=0\\x^2-5x+4<0\end{cases}\)
Mà \(x^2-5x+4<0\) (3) có tập nghiệm T=(1;4)
nên hệ (1) có nghiệm duy nhất khi và chỉ khi phương trình \(f\left(x\right):=\left(m-1\right)x^2+3x+1=0\) (2) có đúng một nghiệm \(x\in T\)
- Nếu m=1 thì (2) có nghiệm duy nhất \(x=-\frac{1}{3}\) không thuộc T
- Nếu \(m\ne1\) thì (2) là phương trình bậc 2 với \(\Delta=13-4m\)
+ Nếu \(\Delta=0\) hay \(m=\frac{13}{4}\) thì (2) có nghiệm \(x=-\frac{2}{3}\) không thuộc T
+ Nếu \(\Delta>0\) hay \(m<\frac{13}{4}\) thì (2) có nghiệm duy nhất thuộc T khi và chỉ khi xảy ra một trong hai trường hợp sau :
\(x_1\) \(\le\)1 < \(x_2\) < 4 (a)
hoặc
1< \(x_1\) <4 \(\le\) \(x_2\) (b)
# Nếu \(x_1\) = 1 \(\Leftrightarrow\) m-1+3+1=0 \(\Leftrightarrow\) m=-3 thì \(x_2=-\frac{1}{4}\) không thỏa mãn(a)
# Nễu \(x_2=4\) hay \(m=\frac{3}{16}\) thì \(x_1=-\frac{4}{13}\) không thỏa mãn (b)
Vậy ta phải có
\(x_1\) <1 < \(x_2\) < 4
hoặc
1< \(x_1\) <4 < \(x_2\)
\(\Leftrightarrow\) \(f\left(1\right)f\left(4\right)<0\)
\(\Leftrightarrow\) (m+3)(16m-3) <0
\(\Leftrightarrow\) -3<m<\(\frac{3}{16}\) Thỏa mãn điều kiện \(\Delta>0\)
Tóm lại -3<m<\(\frac{3}{16}\) là các giá trị cần tìm