Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x\left(x-y\right)+y\left(x+y\right)\)
\(=x^2-xy+xy+y^2\)
\(=x^2+y^2\)
=100
b: \(x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)
\(=x^3-xy-x^3-x^2y+x^2y-xy\)
\(=-2xy\)
a: \(P=\dfrac{x^2+x-x^2+x+2}{\left(x-1\right)\left(x+1\right)}=\dfrac{2}{x-1}\)
a: Ta có: \(-\left(-3x^2\right)^3+4x-9-27x^6\)
\(=27x^6-27x^6+4x-9\)
=4x-9
=-1
\(a,P=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\left(x\ge0;x\ne1\right)\\ P=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{\left(x+16\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\\ P=\dfrac{x+16}{\sqrt{x}+3}\\ b,P=4\Leftrightarrow\dfrac{x+16}{\sqrt{x}+3}=4\\ \Leftrightarrow x+16=4\sqrt{x}+12\\ \Leftrightarrow x-4\sqrt{x}+4=0\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\\ \Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
\(c,P=\dfrac{x+16}{\sqrt{x}+3}=\dfrac{x-9+25}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{25}{\sqrt{x}+3}\\ P=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}-6\ge2\sqrt{\left(\sqrt{x}+3\right)\cdot\dfrac{25}{\sqrt{x}+3}}-6=2\cdot5-6=4\\ P_{min}=4\Leftrightarrow\left(\sqrt{x}+3\right)^2=25\Leftrightarrow\sqrt{x}+3=5\left(\sqrt{x}+3>0\right)\\ \Leftrightarrow x=4\left(tm\right)\)
\(d,x=3-2\sqrt{2}\Leftrightarrow\sqrt{x}=\sqrt{2}-1\\ \Leftrightarrow P=\dfrac{3-2\sqrt{2}+16}{\sqrt{2}-1+3}=\dfrac{19-2\sqrt{2}}{\sqrt{2}+2}\\ P=\dfrac{\left(19-2\sqrt{2}\right)\left(2-\sqrt{2}\right)}{2}=\dfrac{42-23\sqrt{2}}{2}\)
a: \(=x\sqrt{2}-\sqrt{\left(x\sqrt{2}+1\right)^2}=x\sqrt{2}-\left|x\sqrt{2}+1\right|\)
b: Khi A=-3 thì \(\left|x\sqrt{2}+1\right|=x\sqrt{2}+3\)
\(\Leftrightarrow x\sqrt{2}+1=-x\sqrt{2}-3\)
\(\Leftrightarrow2x\sqrt{2}=-4\)
hay \(x=-\sqrt{2}\)
B=x2y2+xy+x3+y3
Thay x=-1, y=3 ta có:
B=x2y2+xy+x3+y3
=(-1)2.32+(-1).3+(-1)3+33
= 1.9-3-1+27
= 9-3-1+27
= 32
Bài 2:
a) Gọi số có 3 chữ số cần tìm là \(\overline{abc}\) ; theo đề bài ra số cần tìm phải thỏa mãn với điều kiện tổng \(\overline{\left(a+b+c\right)}⋮9\)
Phải thỏa mãn 3 trường hợp sau:
(1) \(\overline{\left(a+b+c\right)}=9\)
(2) \(\overline{\left(a+b+c\right)}=18\)
(3) \(\overline{\left(a+b+c\right)}=27\)
Vì \(\overline{abc}\) là các thừa số của 1 số có 3 chữ số nên tỉ lệ thức chung là \(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\)
Ta có: \(\overline{\left(a+b+c\right)}:\left(1+2+3\right)\in\) N*
(1) \(\overline{\left(a+b+c\right)}=9\)
\(\Rightarrow k=\dfrac{9}{6}=1,5\) (loại)
(2) \(\overline{\left(a+b+c\right)}=18\)
\(\Rightarrow k=\dfrac{18}{6}=3\) (t/m)
(3) \(\overline{\left(a+b+c\right)}=27\)
\(\Rightarrow k=\dfrac{27}{6}=4,5\) (loại)
Vậy ta có: duy nhất trường hợp \(\overline{\left(a+b+c\right)}=18\)
Suy ra \(k=3\)
Vậy \(\dfrac{a}{1}=3;\dfrac{b}{2}=3;\dfrac{c}{3}=3\)
\(\Rightarrow a=3;b=6;c=9\)
Vậy \(\overline{abc}=369\)
Bài 5:
Đặt \(\overline{abcd}=k^2\) ta có \(\overline{ab}-\overline{cd}=1\) và \(k\in N\) , \(32\le k< 100\)
\(\Rightarrow101\overline{cd}=k^2-100=\left(k-10\right).\left(k+10\right)\)
\(\Rightarrow\left(k-10\right)⋮101\) hoặc \(\left(k+10\right)⋮101\)
Mà \(Ư\left(k-10;101\right)=1\)
\(\Rightarrow\left(k+10\right)⋮101\)
Vì \(32\le k< 100\) nên \(42\le k\pm10< 101\)
\(\Rightarrow k=91^2\)
\(\Rightarrow\overline{abcd}=91^2=8281\)