cho a=2011.2013 và b=2012.2012 không tính kết quả hãy so sánh a và b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số 1987656 là a
Ta có:
\(A=\left(a+1\right).\left(a-1\right)\)
\(A=a^2-1+a-1\)
\(A=a^2+a-\left(1-1\right)\)
\(A=a^2+a\)
\(B=a.a\)
\(B=a^2\)
Vì \(a^2+a>a^2\Rightarrow A>B\)
A=(1987656+1). 1987655
A=1987656.1987655+1987655
B=(1987655+1).1987656+1987656
suy ra 1978656.1987655=1987656 và 1987655<1987656 nên A<B
Ta có a=2012.2012=(2010+2).2012=2010.2012+4024
b=2010.2014=2010.(2012+2)=2010.2012+4020
Vì 2010.2012=2010.2012 và 4024>4020 nên 2010.2012+4024>2010.2012+4020
hay 2012.2012>2010.2014
Vậy ............. tick nha
\(10A=\dfrac{10^{2021}+10}{10^{2021}+1}=\dfrac{\left(10^{2021}+1\right)+9}{10^{2021}+1}=\dfrac{10^{2021}+1}{10^{2021}+1}+\dfrac{9}{10^{2021}+1}=1+\dfrac{9}{10^{2021}+1}\)
\(10B=\dfrac{10^{2022}+10}{10^{2022}+1}=\dfrac{\left(10^{2022}+1\right)+9}{10^{2022}+1}=\dfrac{10^{2022}+1}{10^{2022}+1}+\dfrac{9}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)
Vì \(10^{2022}>10^{2021}=>10^{2021}+1< 10^{2022}+1\)
\(=>\dfrac{9}{10^{2021}+1}>\dfrac{9}{10^{2022}+1}\)
\(=>10A>10B\)
\(=>A>B\)
A= 10 x 28,96 x 2,869
B = 28,96 x 2,896 x 10
=> A = B
a = 2011.2013
a = 2011.(2012+1)
a = 2011.2012 + 2011
b = 2012.2012
b = (2011+1).2012
b = 2011.2012 + 2012
Vì 2011 < 2012
=> 2011.2012 + 2011 < 2011.2012 + 2012
=> a < b