Một người đi xe đạp trên đoạn đường thẳng AB. Nửa đoạn đường đầu người ấy đi với vận tốc trung bình 20km/h; trong nửa thời gian còn lại đi với vận tốc 10km/h, và sau cùng dắt bộ với vận tốc 5km/h . Tính vận tốc trung bình của người đótrên cả đoạn đường AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có vẻ hơi thiếu dữ kiện rồi, bạn phải cho quãng đường hoặc thời gian của cả 2 đoạn đường thì mới tính được
\(=>vtb=\dfrac{S}{\dfrac{\dfrac{1}{2}S}{v1}+\dfrac{\dfrac{1}{2}S}{v2}}=\dfrac{S}{\dfrac{S}{40}+\dfrac{S}{2v2}}=\dfrac{S}{\dfrac{S\left(2v2+40\right)}{80v2}}=\dfrac{80v2}{2v2+40}=15\)
\(=>v2=12km/h\)
Gọi độ dài quãng đường AB là x (km, x > 0)
Thời gian để người đó đi nửa quãng đường đầu là \(\frac{x}{2.20}=\frac{x}{40}\left(h\right)\)
Nửa thời gian còn lại người đó đi với vận tốc 10km/h, còn lại là 5km/h. Vậy thì trên cả nửa quãng đường AB đó, người đó đi với vận tốc là :
(10 + 5) : 2 = 7,5 (km/h)
Thời gian đi nửa quãng đường sau là: \(\frac{x}{2.7,5}=\frac{x}{15}\left(h\right)\)
Vận tốc trung bình của người đó trên cả quãng đường AB là:
\(x:\left(\frac{x}{40}+\frac{x}{15}\right)=\frac{120}{11}\) (km/h)
Thời gian đi 1/3 quãng đường đầu:
t1= \(\dfrac{S}{3v_1}\)
Thời gian đi 1/3 quãng đường giữa:
t2= \(\dfrac{S}{3v_2}\)
Thời gian đi 1/3 quãng đường cuối:
t3= \(\dfrac{S}{3v_3}\)
Vận tốc trung bình trên cả đoạn đường AB là:
vtb= \(\dfrac{S}{t_1+t_2+t_3}\)= \(\dfrac{S}{\dfrac{S}{3v_1}+\dfrac{S}{3v_2}+\dfrac{S}{3v_3}}\)= \(\dfrac{1}{\dfrac{1}{3v_1}+\dfrac{1}{3v_2}+\dfrac{1}{3v_3}}\)
Thay v1, v2 và v3 vào ta được:
vtb= 13,85(km/h)
- gọi quãng đường ab là x km.
- khi đó 1/3 quãng đường ầu đi hết thời gian là:\(\frac{X}{3}\):20(h)
- thời gian đi hết quãng đường giữa là:.........
- thời gian đi hết quãng đu2ờn cuối là:.........
- vận tốc trung bình của xe trên AB là:\(\frac{X}{\frac{X}{3}:20+\frac{X}{3}:15+\frac{X}{3}:10}\)
- tự ruuts gọn X nhé.p
gọi:
3S là quãng đường
v1 , v2 , v3 lần lượt là vận tốc của xe đạp trên 1/3 đoạn đường đầu , kế và cuối cùng
t1 , t2 , t3 lần lượt là thời gian của xe đạp trên 1/3 đoạn đường đầu , kế và cuối cùng
ta có :
trong 1/3 đoạn đường đầu: S= v1 . t1 => \(t1=\frac{S}{v1}\)
trong 1/3 đoạn đường kế : S=v2.t2 => \(t2=\frac{S}{v2}\)
trong 1/3 đoạn đường cuối cùng : S= v3.t3 => \(t3=\frac{S}{v3}\)
ta có công thức tính vận tốc trung bình:
\(v_{tb}=\frac{3S}{t_1+t_2+t_3}\) = \(=\frac{3S}{\frac{S}{v_1}+\frac{S}{v_2}+\frac{S}{v_3}}=\frac{3S}{S.\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{60}\right)}\)
=\(\frac{3}{\frac{1}{20}+\frac{1}{30}+\frac{1}{60}}\)
=30km/h
đáp số: 30km/h
Gọi s là chiều dài đoạn đường AB
Thời gian đi nửa đoạn đường đầu tiên là
\(t_1=\dfrac{\dfrac{s}{2}}{v_1}=\dfrac{s}{2v_1}\)
Với \(v_1=20\) km/h
Gọi \(t_2\) là thời gian đi nửa đoạn đường còn lại, thì theo đề bài trong khoảng thời gian \(\dfrac{t_2}{2}\)
Người đó đi với vận tốc
\(v_2=10\) km/h;
Do đó đoạn đường đi được trong thời gian này là:
\(v_2.\dfrac{t_2}{2}\)
. Và cuối cùng trong thời gian \(\dfrac{t_2}{2}\)
Còn lại người đó dắt bộ với vận tốc
\(v_3=5\) km/h;
Do đó đoạn đường đi được trong thời gian này là
\(v_3.\dfrac{t_2}{2}\)
Như vậy ta có:
\(\dfrac{S}{2}=v_2.\dfrac{t_2}{2}+v_3.\dfrac{t_2}{2}\)
\(\Rightarrow t_2=\dfrac{S}{v_2+v_3}\). Thời gian đi hết toàn bộ quãng đường AB là:
\(t=t_1+t_2=\dfrac{S}{2v_1}+\dfrac{S}{v_2+v_3}=S\left(\dfrac{1}{2v_1}+\dfrac{1}{v_2+v_3}\right)\)
Từ đó, vận tốc trung bình trên cả đoạn đường AB là:
\(v=\dfrac{s}{t}=\dfrac{1}{\dfrac{1}{2v_1}+\dfrac{1}{v_2+v_3}}\)
Thay số ta được
\(v=\dfrac{40.15}{40+25}\approx10,9\) km/h
Gọi $s$ là chiều dài đoạn đường $AB$.
Thời gian đi nửa đoạn đường đầu tiên là:$t_1=\frac{\frac{s}{2} }{v_1}=\frac{s}{2v_1}$, với $v_1=20$km/h
Gọi $t_2$ là thời gian đi nửa đoạn đường còn lại, thì theo đề bài trong khoảng thời gian $\frac{t_2}{2}$
Người đó đi với vận tốc $v_2=10$ km/h; do đó đoạn đường đi được trong thời gian này là: $v_2.\frac{t_2}{2}$. Và cuối cùng trong thời gian $\frac{t_2}{2} $
Còn lại người đó dắt bộ với vận tốc $v_3=5$ km/h; do đó đoạn đường đi được trong thời gian này là $v_3.\frac{t_2}{2} $. Như vậy ta có: $\frac{s}{2}=v_2.\frac{t_2}{2}+v_3.\frac{t_2}{2} $,
Suy ra $t_2=\frac{s}{v_2+v_3} $. Thời gian đi hết toàn bộ quãng đường $AB$ là:
$t=t_1+t_2=\frac{s}{2v_1}+\frac{s}{v_2+v_3}=s\left ( \frac{1}{2v_1}+\frac{1}{v_2+v_3} \right ) $
Từ đó, vận tốc trung bình trên cả đoạn đường $AB$ là:
$v=\frac{s}{t}=\frac{1}{\frac{1}{2v_1}+\frac{1}{v_2+v_3} } $
Thay số ta được $v=\frac{40.15}{40+25}\approx 10,9$km/h.
b biết làm cách 2 ko? viết về ẩn t2 í. t đang cần làm cách đó gấp