Tìm GTNN
A= (x^2 - 4x +1)/x^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|3-x\right|+8\ge8\)
\(minA=8\Leftrightarrow x=3\)
\(B=\left|x+2\right|-4\ge-4\)
\(minB=-4\Leftrightarrow x=-2\)
2. \(P=\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}\) (BĐT Cauchy-Schwarz)
\(=\dfrac{1}{2}\)
\(\Rightarrow P_{min}=\dfrac{1}{2}\) khi \(\dfrac{x}{y+z}=\dfrac{y}{z+x}=\dfrac{z}{x+y}\Rightarrow x=y=z=\dfrac{1}{3}\)
1, đặt \(x^2+x=t\)
=>\(A=t\left(t-4\right)=t^2-4t=t^2-4t+4-4\)
\(=>A=\left(t-2\right)^2-4\ge-4\) dấu"=' xảy ra\(t=2\)
\(=>x^2+x=2< =>x^2+x-2=0\)
\(< =>x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{9}{4}=0\)
\(< =>\left(x+\dfrac{1}{2}\right)^2-\left(\dfrac{3}{2}\right)^2=0< =>\left(x-1\right)\left(x+2\right)=0\)
\(=>\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\) vậy Amin=-4<=>\(\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
B2
\(=>P=\dfrac{x^2}{y+z}+\dfrac{y+z}{4}+\dfrac{y^2}{x+z}+\dfrac{x+z}{4}+\dfrac{z^2}{x+y}+\dfrac{x+y}{4}\)
\(-\left(\dfrac{y+z+x+z+x+y}{4}\right)\)
áp dụng BDT AM-GM
\(=>\dfrac{x^2}{y+z}+\dfrac{y+z}{4}\ge2\sqrt{\dfrac{x^2}{4}}=x^{ }\left(1\right)\)
\(\)tương tự \(=>\dfrac{y^2}{x+z}+\dfrac{x+z}{4}\ge y\left(2\right)\)
\(=>\dfrac{z^2}{x+y}+\dfrac{x+y}{4}\ge z\left(3\right)\)
(1)(2)(3) \(=>P\ge x+y+z-\dfrac{1}{2}.x+y+z=1-\dfrac{1}{2}=\dfrac{1}{2}\)
dấu"=" xảy ra<=>x=y=z=1/3
a. ĐKXĐ: \(x\ge-1\)
\(y=\sqrt{x^3+1+2\sqrt{x^3+1}+1}+\sqrt{x^3+1-2\sqrt{x^3+1}+1}\)
\(=\sqrt{\left(\sqrt{x^3+1}+1\right)^2}+\sqrt{\left(\sqrt{x^3+1}-1\right)^2}\)
\(=\left|\sqrt{x^3+1}+1\right|+\left|1-\sqrt{x^3+1}\right|\ge\left|\sqrt{x^3+1}+1+1-\sqrt{x^3+1}\right|=2\)
b.
\(f\left(x\right)=\dfrac{x-1}{2}+\dfrac{2}{x-1}+\dfrac{1}{2}\ge2\sqrt{\dfrac{2\left(x-1\right)}{2\left(x-1\right)}}+\dfrac{1}{2}=\dfrac{5}{2}\)
c.
\(y=\dfrac{x-2018+1}{\sqrt{x-2018}}=\sqrt{x-2018}+\dfrac{1}{\sqrt{x-2018}}\ge2\sqrt{\dfrac{\sqrt{x-2018}}{\sqrt{x-2018}}}=2\)
Bài 1:
$A=(9x^2-5x)+(5y^2+3y)$
$=[(3x)^2-2.3x.\frac{5}{6}+(\frac{5}{6})^2]+5(y^2+\frac{3}{5}y+\frac{3^2}{10^2})-\frac{103}{90}$
$=(3x-\frac{5}{6})^2+5(y+\frac{3}{10})^2-\frac{103}{90}$
$\geq \frac{-103}{90}$
Vậy $A_{\min}=\frac{-103}{90}$. Giá trị này đạt tại $3x-\frac{5}{6}=y+\frac{3}{10}=0$
$\Leftrightarrow (x,y)=(\frac{5}{18}, \frac{-3}{10})$
Bài 2:
a.
$-A=4x^2+5y^2-8xy-10y-12$
$=(4x^2-8xy+4y^2)+(y^2-10y+25)-37$
$=(2x-2y)^2+(y-5)^2-37\geq -37$
$\Rightarrow A\leq 37$
Vậy $A_{\max}=37$. Giá trị này đạt tại $2x-2y=y-5=0$
$\Leftrightarrow x=y=5$
b.
$-B=3x^2+16y^2+8xy+5x-2$
$=(x^2+16y^2+8xy)+2(x^2+\frac{5}{2}x+\frac{5^2}{4^2})-\frac{41}{8}$
$=(x+4y)^2+2(x+\frac{5}{4})^2-\frac{41}{8}$
$\geq \frac{-41}{8}$
$\Rightarrow B\leq \frac{41}{8}$
Vậy $B_{\max}=\frac{41}{8}$. Giá trị này đạt tại $x+4y=x+\frac{5}{4}=0$
$\Leftrightarrow x=\frac{-5}{4}; y=\frac{5}{16}$
\(A=\left|x-201\right|+\left|x-204\right|=\left|x-201\right|+\left|204-x\right|\ge\left|x-201+204-x\right|=\left|3\right|=3\)
\(minA=3\Leftrightarrow\left(x-201\right)\left(204-x\right)\ge0\Leftrightarrow204\ge x\ge201\)
\(A=\dfrac{x^2-4x+1}{x^2}=\dfrac{1}{x^2}-\dfrac{4}{x}+1=\left(\dfrac{1}{x^2}-\dfrac{4}{x}+4\right)-3=\left(\dfrac{1}{x}-2\right)^2-3\ge-3\)
\(A_{min}=-3\) khi \(x=\dfrac{1}{2}\)