giả sử pt \(ax^2+bx+c=0\left(a,b,c\ne0\right)\) có 2 nghiệm phân biệt trong đó có đúng 1 nghiệm dương x1 thì phương trình bậc hai \(ct^2+bt+a=0\) cũng có hai nghiệm phân biệt trong đó có \(t>0\) thoả mãn \(x_1+t_1\ge2\)
các bạn giúp mk với nha , thanks
\(PT:ax^2+bx+c=0\) (1) có 2 nghiệm pb có dúng 1 nghiệm dương(x1) => ac<0 ; \(\sqrt{\Delta}=b^2-4ac>0\)
\(PT:ct^2+bt+a=0\) (2) có ac<0 => \(\sqrt{\Delta}=b^2-4ac>0\) (theo trên) => (2) cũng có 2 nghiệm pb ,trái dấu ( 1 dương = t1 )
ta có : x1>0 ; t1 >0 nên :
+ \(x_1.t_1=\frac{-b+\sqrt{\Delta}}{2a}.\frac{-b-\sqrt{\Delta}}{2c}=\frac{4ac}{4ac}=1\left(Neusa>0;c<0\right)\)
+ \(x_1.t_1=\frac{-b-\sqrt{\Delta}}{2a}.\frac{-b+\sqrt{\Delta}}{2c}=\frac{4ac}{4ac}=1\left(Neusa<0;c>0\right)\)
=> \(x_1+t_1\ge2\sqrt{x_1.t_1}=2\)