Tính tích phân bất đinh
\(I=\int\frac{a_1\sin^2x+b_1\sin x\cos x+c_1\cos^2x}{a_2\sin x+b_2\cos x}dx\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thực hiện theo các bước sau :
Bước 1 : Biến đổi
\(a_1\sin x+b_1\cos x+c_1=A\left(a_2\sin x+b_2\cos x+c_2\right)+B\left(a_2\cos x+b_2\sin x\right)+C\)
Bước 2 : Khi đó :
\(I=\int\frac{A\left(a_2\sin x+b_2\cos x+c_2\right)+B\left(a_2\cos x+b_2\sin x\right)+C}{_2\sin x+b_2\cos x+c_2}\)
\(=A\int dx+B\int\frac{\left(a_2\cos_{ }x-b_2\sin x_{ }\right)dx}{_{ }a_2\sin x+b_2\cos x+c_2}+C\int\frac{dx}{a_2\sin x+b_2\cos x+c_2}\)
\(=Ax+B\ln\left|a_2\sin x+b_2\cos x+c_2\right|+C\int\frac{dx}{a_2\sin x+b_2\cos x+c_2}\)
Trong đó :
\(\int\frac{dx}{a_2\sin x+b_2\cos x+c_2}\)
Thực hiện theo các bước sau :
Bước 1 : Biến đổi :
\(a_1\sin x+b_1\cos x=A\left(a_2\sin x+b_2\cos x\right)+B\left(a_2\cos x-b_2\sin x\right)\)
Bước 2 : Khi đó :
\(I=\int\frac{A\left(a_2\sin x+b_2\cos x\right)+B\left(a_2\cos x-b_2\sin x\right)}{\left(a_2\sin x+b_2\cos x\right)^2}dx=A\int\frac{dx}{a_2\cos x+b_2\sin x}+B\int\frac{\left(a_2\cos x+b_2\sin x\right)dx}{\left(a_2\cos x+b_2\sin x\right)^2}\)
\(=\frac{A}{\sqrt{a^2_2+b^2_2}}\int\frac{dx}{\sin\left(x+\alpha\right)}-B\int\frac{1}{a_2\sin x+b_2\cos x}dx=\frac{A}{\sqrt{a^2_2+b^2_2}}\ln\left|\tan\left(\frac{x+\alpha}{2}\right)\right|-\frac{B}{a_2\cos x+b_2\sin x}+C\)
Trong đó : \(\sin\alpha=\frac{b_2}{\sqrt{a^2_2+b^2_2}_{ }};\cos\alpha=\frac{a_2}{\sqrt{a^2_2+b^2_2}}\)
a1sinx+b1cosx=A(a2sinx+b2cosx)+B(a2cosx-b2sinx) roi the vo ,do la dung dong nhat thuc
Ta có :
\(I=\int\frac{dx}{\left(3\tan^2x-2\tan x-1\right)\cos^2x}=\int\frac{d\left(\tan x\right)}{3\tan^2x-2\tan x-1}\)
Đặt \(t=\tan x\Rightarrow I=\int\frac{dt}{3t^2-2t-1}=\frac{1}{3}.\frac{1}{t+\frac{1}{3}}\int\left(\frac{1}{t-1}-\frac{1}{t+\frac{1}{3}}\right)dt\)
= \(\frac{1}{4}\ln\left|\frac{t-1}{t+\frac{1}{3}}\right|=\frac{1}{4}\ln\left|\frac{3t-3}{3t +3}\right|+C\)
Thay trả lại :
\(t=\tan x\Rightarrow I=\frac{1}{4}\ln\left|\frac{3\tan x-3}{3\tan x+1}\right|+C\)
a) \(\int\left(x+\ln x\right)x^2\text{d}x=\int x^3\text{d}x+\int x^2\ln x\text{dx}\)
\(=\dfrac{x^4}{4}+\int x^2\ln x\text{dx}+C\) (*)
Để tính: \(\int x^2\ln x\text{dx}\) ta sử dụng công thức tính tích phân từng phần như sau:
Đặt \(\left\{{}\begin{matrix}u=\ln x\\v'=x^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u'=\dfrac{1}{x}\\v=\dfrac{1}{3}x^3\end{matrix}\right.\)
Suy ra:
\(\int x^2\ln x\text{dx}=\dfrac{1}{3}x^3\ln x-\dfrac{1}{3}\int x^2\text{dx}\)
\(=\dfrac{1}{3}x^3\ln x-\dfrac{1}{3}.\dfrac{1}{3}x^3\)
Thay vào (*) ta tính được nguyên hàm của hàm số đã cho bằng:
(*) \(=\dfrac{1}{3}x^3-\dfrac{1}{3}x^3\ln x+\dfrac{1}{9}x^3+C\)
\(=\dfrac{4}{9}x^3-\dfrac{1}{3}x^3\ln x+C\)
b) Đặt \(\left\{{}\begin{matrix}u=x+\sin^2x\\v'=\sin x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u'=1+2\sin x.\cos x\\v=-\cos x\end{matrix}\right.\)
Ta có:
\(\int\left(x+\sin^2x\right)\sin x\text{dx}=-\left(x+\sin^2x\right)\cos x+\int\left(1+2\sin x\cos^2x\right)\text{dx}\)
\(=-\left(x+\sin^2x\right)\cos x+\int\cos x\text{dx}+2\int\sin x.\cos^2x\text{dx}\)
\(=-\left(x+\sin^2x\right)\cos x+\sin x-2\int\cos^2x.d\left(\cos x\right)\)
\(=-\left(x+\sin^2x\right)\cos x+\sin x-2\dfrac{\cos^3x}{3}+C\)
a) \(\sin^4x=\left(\sin^2x\right)^2=\left(\dfrac{1-\cos2x}{2}\right)^2\)
\(=\dfrac{1}{4}\left(1-2\cos2x+\cos^22x\right)\)
\(=\dfrac{1}{4}\left(1-2.\cos2x+\dfrac{1+\cos4x}{2}\right)\)
\(=\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\)
Vậy:
\(\int\sin^4x\text{dx}=\int\left(\dfrac{3}{8}-\dfrac{1}{2}\cos2x+\dfrac{1}{8}\cos4x\right)\text{dx}\)
\(=\dfrac{3}{8}x-\dfrac{1}{4}\sin2x+\dfrac{1}{32}\sin4x+C\)
\(I=\frac{1}{\sqrt{a^2+b^2}}\int\frac{dx}{\sin\left(x+\alpha\right)}=\frac{1}{\sqrt{a^2+b^2}}\int\frac{dx}{2\sin\frac{x+\alpha}{2}.\cos\frac{x+\alpha}{2}}=\frac{1}{\sqrt{a^2+b^2}}\int\frac{dx}{2\tan\frac{x+\alpha}{2}.\cos^2\frac{x+\alpha}{2}}\)
\(\Rightarrow\frac{1}{\sqrt{a^2+b^2}}\int\frac{d\left(\tan\frac{x+\alpha}{2}\right)}{\tan\frac{x+\alpha}{2}}=\frac{1}{\sqrt{a^2+b^2}}\ln\left|\tan\frac{x+\alpha}{2}\right|+C\)
a)
Ta có \(A=\int ^{\frac{\pi}{4}}_{0}\cos 2x\cos^2xdx=\frac{1}{4}\int ^{\frac{\pi}{4}}_{0}\cos 2x(\cos 2x+1)d(2x)\)
\(\Leftrightarrow A=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos x(\cos x+1)dx=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos xdx+\frac{1}{8}\int ^{\frac{\pi}{2}}_{0}(\cos 2x+1)dx\)
\(\Leftrightarrow A=\frac{1}{4}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin x+\frac{1}{16}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin 2x+\frac{1}{8}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|x=\frac{1}{4}+\frac{\pi}{16}\)
b)
\(B=\int ^{1}_{\frac{1}{2}}\frac{e^x}{e^{2x}-1}dx=\frac{1}{2}\int ^{1}_{\frac{1}{2}}\left ( \frac{1}{e^x-1}-\frac{1}{e^x+1} \right )d(e^x)\)
\(\Leftrightarrow B=\frac{1}{2}\left.\begin{matrix} 1\\ \frac{1}{2}\end{matrix}\right|\left | \frac{e^x-1}{e^x+1} \right |\approx 0.317\)
c)
Có \(C=\int ^{1}_{0}\frac{(x+2)\ln(x+1)}{(x+1)^2}d(x+1)\).
Đặt \(x+1=t\)
\(\Rightarrow C=\int ^{2}_{1}\frac{(t+1)\ln t}{t^2}dt=\int ^{2}_{1}\frac{\ln t}{t}dt+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)
\(=\int ^{2}_{1}\ln td(\ln t)+\int ^{2}_{1}\frac{\ln t}{t^2}dt=\frac{\ln ^22}{2}+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)
Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=\frac{dt}{t^2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=\frac{-1}{t}\end{matrix}\right.\Rightarrow \int ^{2}_{1}\frac{\ln t}{t^2}dt=\left.\begin{matrix} 2\\ 1\end{matrix}\right|-\frac{\ln t+1}{t}=\frac{1}{2}-\frac{\ln 2 }{2}\)
\(\Rightarrow C=\frac{1}{2}-\frac{\ln 2}{2}+\frac{\ln ^22}{2}\)
Ta thực hiện theo các bước sau :
Bước 1 : Biến đổi
\(a_1\sin^2x+b_1\sin x\cos x+c_1\cos^2x=\left(A\sin x+B\cos x\right)\left(a_2\sin x+b_2\cos x\right)+C\left(\sin^2x+\cos^2x\right)\)
Bước 2 : Khi đó :
\(I=\int\frac{\left(A\sin x+B\cos x\right)\left(a_2\sin x+b_2\cos x\right)+C\left(\sin^2x+\cos^2x\right)}{a_2\sin x+b_2\cos x}\)
\(=\int\left(A\sin x+B\cos x\right)+C\int\frac{dx}{a_2\sin x+b_2\cos x}\)
= \(-A\cos x+B\sin x+\sqrt{\frac{C}{a^2_a+b_2^2}}\int\frac{dx}{\sin\left(x+\alpha\right)}\)
=\(-A\cos x+B\sin x+\frac{C}{\sqrt{a_2^2+b^2_2}}\ln\left|\tan\frac{x+\alpha}{2}\right|+C\)
Trong đó :
\(\sin\alpha=\frac{b_2}{\sqrt{a_2^2}+b^{2_{ }}_2};\cos\alpha=\frac{a_2}{\sqrt{a_2^2}+b^{2_{ }}_2}\)