Cho tam giác ABC
a/ Qua D là trung điểm của cạnh AB kẻ DE song song BC (E thuộc AC)
b/ Nếu D và C lần lươt là trung điểm của AB và AC . Chứng minh: DE song song BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AEDF có
AE//DF
DE//AF
Do đó: AEDF là hình bình hành
mà \(\widehat{DAE}=90^0\)
nên AEDF là hình chữ nhật
a, Vì DE//AB nên DE⊥AC và DF//AC nên DF⊥AB
Vì \(\widehat{AED}=\widehat{AFD}=\widehat{EAF}=90^0\) nên AEDF là hcn
b,Vì E là trung điểm MD và AC nên AMCD là hbh
Mà AC⊥DE nên AMCD là hthoi
c, Vì D là trung điểm BC và AK và \(\widehat{BAC}=90^0\) nên ABKC là hcn
Để ABKC là hv thì AB=AC hay tam giác ABC vuông cân tại A
Vì D là trung điểm BC mà DE//AC nên E là trung điểm AB
Do đó DE là đường trung bình tam giác ABC
Vậy \(DE=\dfrac{1}{2}AC\) hay \(AC=2DE\)
a: Xét tứ giác BDEM có
DE//BM
BD//EM
Do đó: BDEM là hình bình hành
Suy ra: DE=BM
mà DE=BC/2
nên BM=BC/2
hay M là trung điểm của BC
Xét ΔADE và ΔEMC có
\(\widehat{A}=\widehat{CEM}\)
DE=MC
\(\widehat{ADE}=\widehat{EMC}\)
Do đó: ΔADE=ΔEMC
b: Xét ΔABC có
DE//BC
nên AD/AB=DE/BC
=>AD/AB=1/2
=>AD=1/2AB
hay D là trung điểm của AB
Tự vẽ hình nhé.
Ta có : D là trung điểm của cạnh AB, DE // BC
\(\Rightarrow\)E là trung điểm của cạnh AC ( theo tính chất của đường trung bình trong tam giác)
\(\Rightarrow\)EA = EC (đpcm)
dễ