K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(2y+\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{2020\cdot2021}\right)=\dfrac{4041}{2021}\)

\(\Leftrightarrow2y+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2020}-\dfrac{1}{2021}\right)=\dfrac{4041}{2021}\)

\(\Leftrightarrow2y+1-\dfrac{1}{2021}=\dfrac{4041}{2021}\)

\(\Leftrightarrow2y=\dfrac{4041}{2021}+\dfrac{1}{2021}-1\)

\(\Leftrightarrow2y=2-1=1\)

hay \(y=\dfrac{1}{2}\)

27 tháng 12 2021

A

27 tháng 12 2021

A

8 tháng 4 2021

Ta có: \(\frac{A}{B}=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{4042}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}\)

\(=\frac{\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}\right)}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}\)

\(=1+\frac{\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}\)

Ta thấy \(1>\frac{1}{2}\) ; \(\frac{1}{3}>\frac{1}{4}\) ; ... ; \(\frac{1}{4041}>\frac{1}{4042}\)

\(\Rightarrow\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}< 1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}\)

\(\Rightarrow\frac{\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}< 1\)

\(\Rightarrow1+\frac{\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}< 1+1< 1+\frac{2021}{2020}=1\frac{2021}{2020}\)

\(\Rightarrow\frac{A}{B}< 1\frac{2021}{2020}\)

ghi rõ đề bài ra nhanh lên

19 tháng 8 2020

TÍNH BẰNG CÁCH NHANH NHẤT NHA CÁC BN 

19 tháng 8 2020

a) \(\left(\frac{1}{3}+\frac{1}{5}\right)+\left(\frac{1}{6}-\frac{1}{5}\right)=\left(\frac{1}{3}+\frac{1}{6}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)=\frac{1}{2}\)

b) \(\frac{3}{16}\times\frac{7}{5}+\frac{3}{5}\times\frac{9}{16}=\frac{21}{80}+\frac{27}{80}=\frac{48}{80}=\frac{3}{5}\)

c) \(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{2020\times2021}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2020}-\frac{1}{2021}\)

\(=1-\frac{1}{2021}=\frac{2020}{2021}\)

d) \(\frac{1}{1\times3}+\frac{1}{3\times5}+...+\frac{1}{2021\times2023}=\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+...+\frac{2}{2021\times2023}\right)\)

\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2021}-\frac{1}{2023}\right)\)

\(=\frac{1}{2}\times\left(1-\frac{1}{2023}\right)=\frac{1}{2}\times\frac{2022}{2023}=\frac{1011}{2023}\)

e) \(\frac{3}{2}\times\frac{1}{7}\times\frac{5}{4}+\frac{15}{2}\times\frac{6}{7}\times\frac{1}{4}==\frac{15}{56}+\frac{80}{56}=\frac{95}{56}\)

1 tháng 8 2021

1/ \(\left(\dfrac{2021}{2020}+\dfrac{2020}{2021}\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)

=\(\left(\dfrac{2021}{2020}+\dfrac{2020}{2021}\right).0\)

=\(0\)

 

26 tháng 10 2021

mink chịu bài này nó rất khó

1/2 + 1/6+1/12 + 1/20 +....+ 1/x(x+1) = 2021/2022

1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 +...+ 1/x. (x+1) = 2021/2020

1 - 1/2 + 1/2 - 1/3 + 1/3- 1/4 + 1/4 - 1/5 +...+ 1/x - 1/(x+1) = 2021/2020

1 - 1/(x+1)        = 2021/2020

     1/(x+1)         = 1 - 2021/2020

     1/(x+1)         = -1/2020

     1/(x+1)         = 1/-2020

       x + 1           = - 2020

        x                 = -2020 - 1

        x                 = -2021

Giải:

1/2+1/6+1/12+1/20+...+1/x.(x+1)=2021/2022

1/1.2+1/2.3+1/3.4+1/4.5+...+1/x.(x+1)=2021/2022

1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1=2021/2022

1/1-1/x+1                                    =2021/2022

      1/x+1                                    =1/1-2021/2022

      1/x+1                                    =1/2022

⇒x+1=2022

       x=2022-1

       x=2021

Chúc bạn học tốt!