2 x y +(1/2+1/6+1/12+......+1/2020x2021=4041/2021
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{A}{B}=\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{4042}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}\)
\(=\frac{\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}\right)}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}\)
\(=1+\frac{\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}\)
Ta thấy \(1>\frac{1}{2}\) ; \(\frac{1}{3}>\frac{1}{4}\) ; ... ; \(\frac{1}{4041}>\frac{1}{4042}\)
\(\Rightarrow\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}< 1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}\)
\(\Rightarrow\frac{\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}< 1\)
\(\Rightarrow1+\frac{\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{4042}}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{4041}}< 1+1< 1+\frac{2021}{2020}=1\frac{2021}{2020}\)
\(\Rightarrow\frac{A}{B}< 1\frac{2021}{2020}\)
a) \(\left(\frac{1}{3}+\frac{1}{5}\right)+\left(\frac{1}{6}-\frac{1}{5}\right)=\left(\frac{1}{3}+\frac{1}{6}\right)+\left(\frac{1}{5}-\frac{1}{5}\right)=\frac{1}{2}\)
b) \(\frac{3}{16}\times\frac{7}{5}+\frac{3}{5}\times\frac{9}{16}=\frac{21}{80}+\frac{27}{80}=\frac{48}{80}=\frac{3}{5}\)
c) \(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{2020\times2021}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2020}-\frac{1}{2021}\)
\(=1-\frac{1}{2021}=\frac{2020}{2021}\)
d) \(\frac{1}{1\times3}+\frac{1}{3\times5}+...+\frac{1}{2021\times2023}=\frac{1}{2}\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+...+\frac{2}{2021\times2023}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2021}-\frac{1}{2023}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{2023}\right)=\frac{1}{2}\times\frac{2022}{2023}=\frac{1011}{2023}\)
e) \(\frac{3}{2}\times\frac{1}{7}\times\frac{5}{4}+\frac{15}{2}\times\frac{6}{7}\times\frac{1}{4}==\frac{15}{56}+\frac{80}{56}=\frac{95}{56}\)
1/ \(\left(\dfrac{2021}{2020}+\dfrac{2020}{2021}\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)
=\(\left(\dfrac{2021}{2020}+\dfrac{2020}{2021}\right).0\)
=\(0\)
1/2 + 1/6+1/12 + 1/20 +....+ 1/x(x+1) = 2021/2022
1/1.2 + 1/2.3 + 1/3.4 + 1/4.5 +...+ 1/x. (x+1) = 2021/2020
1 - 1/2 + 1/2 - 1/3 + 1/3- 1/4 + 1/4 - 1/5 +...+ 1/x - 1/(x+1) = 2021/2020
1 - 1/(x+1) = 2021/2020
1/(x+1) = 1 - 2021/2020
1/(x+1) = -1/2020
1/(x+1) = 1/-2020
x + 1 = - 2020
x = -2020 - 1
x = -2021
Giải:
1/2+1/6+1/12+1/20+...+1/x.(x+1)=2021/2022
1/1.2+1/2.3+1/3.4+1/4.5+...+1/x.(x+1)=2021/2022
1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1=2021/2022
1/1-1/x+1 =2021/2022
1/x+1 =1/1-2021/2022
1/x+1 =1/2022
⇒x+1=2022
x=2022-1
x=2021
Chúc bạn học tốt!
Ta có: \(2y+\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{2020\cdot2021}\right)=\dfrac{4041}{2021}\)
\(\Leftrightarrow2y+\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2020}-\dfrac{1}{2021}\right)=\dfrac{4041}{2021}\)
\(\Leftrightarrow2y+1-\dfrac{1}{2021}=\dfrac{4041}{2021}\)
\(\Leftrightarrow2y=\dfrac{4041}{2021}+\dfrac{1}{2021}-1\)
\(\Leftrightarrow2y=2-1=1\)
hay \(y=\dfrac{1}{2}\)
nhanh nha các bạn