K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2019

a) Vì \(\Delta ABC\) cân tại \(A\left(gt\right)\)

=> \(\left\{{}\begin{matrix}AB=AC\\\widehat{B}=\widehat{C}\end{matrix}\right.\) (tính chất tam giác cân).

Xét \(\Delta ABC\) có:

\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\) (định lí tổng 3 góc trong một tam giác).

=> \(\widehat{B}+\widehat{C}=180^0-\widehat{A}\) (1).

\(\widehat{B}=\widehat{C}\left(cmt\right)\)

=> \(\widehat{B}=\widehat{C}=\frac{\widehat{A}}{2}\) (2).

Từ (1) và (2) => \(\widehat{B}=\widehat{C}=180^0-\frac{\widehat{A}}{2}.\)

b) Xét 2 \(\Delta\) vuông \(AHB\)\(AHC\) có:

\(\widehat{AHB}=\widehat{AHC}=90^0\left(gt\right)\)

\(AB=AC\left(cmt\right)\)

Cạnh AH chung

=> \(\Delta AHB=\Delta AHC\) (cạnh huyền - cạnh góc vuông).

=> \(HB=HC\) (2 cạnh tương ứng).

=> \(\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng).

c) Ta có:

\(\left\{{}\begin{matrix}AM+BM=AB\\AN+CN=AC\end{matrix}\right.\)

\(\left\{{}\begin{matrix}BM=CN\left(gt\right)\\AB=AC\left(cmt\right)\end{matrix}\right.\)

=> \(AM=AN.\)

=> \(\Delta AMN\) cân tại A.

Chúc bạn học tốt!

29 tháng 3 2017

A C B D E 33 19 19 19

1. Ta có: tan(52o) = \(\frac{AE}{AB}\)

=> AE = AB.tan(52o)

2. Ta có: tan(71o) = \(\frac{AC}{AB}\)

=> AC = AB.tan(71o)

3. Ta có: tan(19o) = \(\frac{AD}{AB}\)

=> AD = AB.tan(19o)

4. \(\frac{AE}{CD}\) = \(\frac{AE}{AC-AD}\)

\(\frac{AB.tan\left(52^o\right)}{AB.tan\left(71^o\right)-AB.tan\left(19^o\right)}\)

\(\frac{tan\left(52^o\right)}{tan\left(71^o\right)-tan\left(19^o\right)}\)

\(\frac{\sin\left(52^o\right)}{\cos\left(52^o\right)}\)\(\frac{\cos\left(71^o\right).\cos\left(19^o\right)}{\sin\left(71^o-19^o\right)}\)

\(\frac{\cos\left(71^o\right).\cos\left(19^o\right)}{\cos\left(52^o\right)}\)

\(\frac{1}{2}\)\(\frac{\cos\left(71^o+19^o\right)+\cos\left(71^o-19^o\right)}{\cos\left(52^o\right)}\)

\(\frac{1}{2}\)\(\frac{\cos\left(90^o\right)+\cos\left(52^o\right)}{\cos\left(52^o\right)}\)

\(\frac{1}{2}\)

30 tháng 3 2017

to khong thich lam may cai dang nay to biet lam day