Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số phải tìm là A (A#0) => (A - 5) chia hết cho 29 (A- 5) chia 31 dư 23 ( vì 28-5=23) Khi bớt thương của phép chia (A-5) chia 31 đi 1 đơn vị thì (A-5) sẽ giảm đi 31đơn vị Ta có: 31 chia 29( dư 2). Số lần bớt thương đi là : (29 - 23) : 2 = 3 (lần) Vì số cần tìm nhỏ nhất nên số lần bớt thương sẽ là 3 lần. Vậy số cần tìm là : 31 x 3 + 23 + 5 = 121
Gọi số phải tìm là A (A#0)
=> (A - 5) chia hết cho 29
(A- 5) chia 31 dư 23 ( vì 28-5=23)
Khi bớt thương của phép chia (A-5) chia 31 đi 1 đơn vị thì (A-5) sẽ giảm đi 31đơn vị
Ta có: 31 chia 29( dư 2).
Số lần bớt thương đi là : (29 - 23) : 2 = 3 (lần)
Vì số cần tìm nhỏ nhất nên số lần bớt thương sẽ là 3 lần.
Vậy số cần tìm là : 31 x 3 + 23 + 5 = 121
Gọi số tự nhiên nhỏ nhất cần tìm là a
Do a chia 29 dư 5; chia 31 dư 28
=> a = 29.m + 5 = 31.n + 28 (m; n ϵ N)(m; n ∈ N)
=> 29 . m = 31 . n + 23
=> 29.m = 29.n + 2.n + 23
=> 29.m - 29.n = 2.n + 23
=> 29.(m - n) = 2.n + 23
=>2 .n + 23 ⋮ 29 => 2 . n + 23 ⋮ 29
Để a nhỏ nhất thì n nhỏ nhất => 2.n + 23 nhỏ nhất
Mà 2.n + 23 là số lẻ => 2.n + 23 = 29
=> 2.n = 29 - 23
=> 2.n = 6
=> n = 6 : 2 = 3
=> a = 31.3 + 28 = 121
Vậy số nhỏ nhất cần tìm là 121.
GIẢI
Gọi số cần tìm là a;
a: 29 dư 5 => a = 29m + 5 (m\(\in\)N)
a: 31 dư 21 => a = 31n + 28 (n\(\in\)N) (1)
Nên a = 29m + 5 = 31n + 28 => 29(m-n) = 2n + 23
Ta thấy 2n + 23 là số lẻ nên 29(m-n) cũng là số lẻ
=> m - n\(\ge\)1
Theo đề bài a nhỏ nhất, từ (1) suy ra n nhỏ nhất
=>2n =29(m-n) - 23 (Nhỏ nhất)
=>(m-n) (Nhỏ nhất)
Do đó m - n = 1 => 2n = 29 - 23 = 6
=> n = 3
Vậy số cần tìm là : a = 31n + 28 = 31.3 + 28 = 121
Nếu chia hết cho 29 thì chia cho 31 dư 28-5=23.
Hiệu của 31 và 29: 31 - 29 = 2
Thương của phép chia cho 31 là:
(29-23) : 2 = 3
(Hoặc. Gọi a là thương lúc này của phép chia cho 31.
2 x a + 23 = 29 => a = 3)
Số cần tìm là:
31 x 3 + 28 = 121
Đáp số: 121
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là : 29p + 5 ( p thuộc N )
Tương tự A = 31q + 28 ( q thuộc N )
Nê 29p + 5 = 31q + 28 => 29.( p - q ) = 2q + 23
Ta thaayd : 2q + 23 là số lẻ => 29. ( p - q ) cũng là số lẻ => p - q >=1
theo giả thiết A nhỏ nhất => q nhỏ nhất ( A = 31q + 28 )
=> 2q = 29.( p - q ) -23 nhỏ nhất
=> p - q nhỏ nhất
do đó p - q =1 => 2q = 29 - 23 = 6
=> q = 3
A = 31q + 28 = 31.3 + 28 = 121
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 (p N)
Tương tự: A = 31q + 28 (q N)
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p - q) cũng là số lẻ => p - q 1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=> 2q = 29(p - q) - 23 nhỏ nhất
=> p - q nhỏ nhất
Do đó p - q = 1 => 2q = 29 - 23 = 6
=> q = 3
Gọi số tự nhiên cần tìm là \(A\)
Chia cho 29 dư 5 nghĩa là: \(A=29p+5\left(p\in N\right)\)
Tương tự: \(A=31q+28\left(q\in N\right)\)
Nên: \(29p+5=31q+28\) \(\Rightarrow\) \(29-\left(p-q\right)=2q+23\)
Ta thấy: \(2q+23\) là số lẻ \(\Rightarrow\) \(29\left(p-q\right)\) cũng là số lẻ \(\Rightarrow\)\(p-q\ge1\)
Theo giả thiết A nhỏ nhất
\(\Rightarrow\) q nhỏ nhất \(\left(A=31q+28\right)\)
\(\Rightarrow\)\(2q=29\left(p-q\right)-23\) nhỏ nhất
\(\Rightarrow\) \(p-q\) nhỏ nhất
Do đó:
\(p-q=1\) \(\Rightarrow\) \(2q=29-23=6\)
\(\Rightarrow\) \(q=3\)
Vậy số cần tìm là: \(A=31q+28=31.3+28=121\)
biết rắng khi chia số này cho 29 dư 5, còn khi chia cho 31 thì dư 28
Bài này mình làm rồi :
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ ==>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
Gọi số tự nhiên cần tìm là x.
Đặt A=x-5 x chia 29 dư 5
=> A chia hết cho 29 x chia 31 dư 28
=> A chia 31 dư 23 =>A=31k+23
Cho k=0,1,2,3,... ta thấy khi k=3 thì A=116 chia hết cho 29
Vậy x=A+5=116+5=121.
like nhe
Gọi x là số tự nhiên cần tìm. Vì x chia 29 dư 5 nên x=29k+5 (k là số tự nhiên)
Mặt khác, x chia 31 dư 28 nên x-28=29k-23 chia hết cho 31
Lại có 29-14.2=1 nên 29-14.(31-29)=1 suy ra 15.29-14.31=1, suy ra
29k-23=29k-23.(15.29-14.31)=29(k-23.15)+23.14.31 chia hết cho 31
Điều này dẫn tới k-23.15=k-4-11.31 chia hết cho 31 nên k-4 chia hết cho 31.
Để x nhỏ nhất thì k cũng phải nhỏ nhất, do đó k=4, suy ra x=29.4+5=121