trong mạt phẳng Oxy cho tam giác ABC có A(-1,0) , B(1,2) , C(5,-2) : a) hỏi tam giác ABC là tam giác gì ? Tính diện tích tam giác ABC ; b) gọi H là chân đường cao kẻ từ B của tam giác ABC . Tìm tọa độ của H .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác ABC là tam giác vuông
AB=5, BC=6
diện tích tam giác ABC là 5.6:2=15 (dvdt)
Do C thuộc trục tung nên tọa độ có dạng \(C\left(0;c\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-4;-1\right)\\\overrightarrow{AC}=\left(-1;c-2\right)\end{matrix}\right.\)
Do tam giác ABC vuông tại A \(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=0\)
\(\Rightarrow4-\left(c-2\right)=0\Rightarrow c=6\)
\(\Rightarrow C\left(0;6\right)\)
\(\Rightarrow\overrightarrow{AC}=\left(-1;4\right)\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{\left(-4\right)^2+\left(-1\right)^2}=\sqrt{17}\\AC=\sqrt{\left(-1\right)^2+4^2}=\sqrt{17}\end{matrix}\right.\)
\(\Rightarrow S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{17}{2}\)
a) hình tự vẽ
b)theo hình vẽ tam giác ABC là tam giác vuông ở B
ta có AB=5,BC=6=>\(SABC=\frac{AB.BC}{2}=\frac{30}{2}=15\)(đơn vị diện tích)
\(\overrightarrow{AB}=\left(4;0\right)\)
\(\overrightarrow{AC}=\left(3;3\right)\)
\(\cos\widehat{A}=\dfrac{4\cdot3+3\cdot0}{\sqrt{4^2}+\sqrt{3^2+3^2}}=\dfrac{12}{4+3\sqrt{2}}=-24+18\sqrt{2}\)
=>Đề sai rồi bạn
b) Độ dài đoạn thẳng AB là:
\(AB=\sqrt{\left(2-2\right)^2+\left(4+1\right)^2}=5\)
Độ dài đoạn thẳng AC là:
\(AC=\sqrt{\left(2+4\right)^2+\left(4+1\right)^2}=\sqrt{61}\)
Độ dài đoạn thẳng BC là:
\(BC=\sqrt{\left(2+4\right)^2+\left(-1+1\right)^2}=6\)
Ta có: \(BA^2+BC^2=5^2+6^2=25+36=61\)
\(AC^2=\left(\sqrt{61}\right)^2=61\)
Do đó: \(AC^2=BA^2+BC^2\)(=61)
Xét ΔABC có \(AC^2=BA^2+BC^2\)(cmt)
nên ΔABC vuông tại B(Định lí Pytago đảo)
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{BA\cdot BC}{2}=\dfrac{5\cdot6}{2}=\dfrac{30}{2}=15\left(cm^2\right)\)
\(AB^2=\left(1+1\right)^2+\left(2-0\right)^2=8\)
\(AC^2=\left(5+1\right)^2+\left(-2-0\right)^2=39\)
\(BC^2=\left(5-1\right)^2+\left(-2-2\right)^2=32\)
Cạnh lớn nhất là AC, ta có:
AC2 < AB2 + BC2
=> Tam giác ABC nhọn
Diện tích ABC= dt(CDEF) - dt(CDB) - dt(CFA) - dt(ABE)
= 5.4 - 4.4/2 - 5.1/2 - 3.1/2
= 8
Gọi H(x,y), ta có BH vuông góc với AC => \(\overrightarrow{BH}.\overrightarrow{AC}=0\) => (x - 1).(5-0) + (y - 2)(-2 +1) = 0
=> 5x - y = 3 (1)
Phương trình đt AC là: \(\frac{y+1}{-2+1}=\frac{x-0}{5-0}\) => 5y + x = -5
Vì H thuộc AC nên 5y + x = -5 (2)
Từ (1) và (2), giải hệ pt ta có: x =5/13 và y = -14/13
Vậy H(5/13; -14/13)
AB2=(1+1)2+(2−0)2=8
AC2=(5+1)2+(−2−0)2=39
BC2=(5−1)2+(−2−2)2=32
Cạnh lớn nhất là AC, ta có:
AC2 < AB2 + BC2
=> Tam giác ABC nhọn
Diện tích ABC= dt(CDEF) - dt(CDB) - dt(CFA) - dt(ABE)
= 5.4 - 4.4/2 - 5.1/2 - 3.1/2
= 8
Gọi H(x,y), ta có BH vuông góc với AC => BH−→−−.AC−→−−=0 => (x - 1).(5-0) + (y - 2)(-2 +1) = 0
=> 5x - y = 3 (1)
Phương trình đt AC là: y+1−2+1=x−05−0 => 5y + x = -5
Vì H thuộc AC nên 5y + x = -5 (2)
Từ (1) và (2), giải hệ pt ta có: x =5/13 và y = -14/13
Vậy H(5/13; -14/13)