đơn giản biểu thức : sin 1000 + sin 800 + cos 160 + cos 1640
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=sin\alpha-sin\alpha\cdot cos^2\alpha\)
\(A=sin\alpha\left(1-cos^2\alpha\right)\)
\(A=sin\alpha\cdot sin^2\alpha\)
\(A=sin^3\alpha\)
Chọn C.
Ta có:
A = sin( a-160) .cos( a + 140) – sin( a + 140) .cos(a - 160) = sin[ ( a - 170) – (a + 130) ] = sin( -300) = -0,5.
= (sin2x )3 + (cos2x)3 + 3sin2x. cos2x = (sin2x + cos2x).(sin4x - sin2x.cos2x + cos4x) + 3sin2x. cos2x
= sin4x + 2sin2x.cos2x + cos4x = (sin2x + cos2x)2 = 12 = 1
Mình chỉ biết \(\text{ rút gọn biểu thức lượng giác}\) thôi :
\(\left(sina+cosa\right)^2+\left(sina-cosa\right)^2\)
\(\text{ rút gọn biểu thức lượng giác}\)
\(2\)
Có thể coi biểu thức này không thể đơn giản được nữa (bởi vì biểu thức sau khi biến đổi cũng cồng kềnh không kém gì biểu thức ban đầu)
Chắc bạn ghi đề bài không đúng
\(A=\cos\left(\text{π}-\dfrac{x}{2}\right)-\sin\left(\text{π}-x\right)\)
\(=\sin x+\sin x=2\cdot\sin x\)
\(B=\cos\left(2\text{π}+\dfrac{\text{π}}{2}-x\right)+\sin\left(4\text{π}+\dfrac{\text{π}}{2}-x\right)-\cos\left(6\text{π}+\dfrac{3}{2}\text{π}+x\right)-\sin\left(16\text{π}+\dfrac{3}{2}\text{π}+x\right)\)
\(=\sin x+\cos x-\cos\left(\dfrac{3}{2}\text{π}+x\right)-\sin\left(\dfrac{3}{2}\text{π}+x\right)\)
\(=\sin x+\cos x-\cos\left(\text{π}+\dfrac{\text{π}}{2}+x\right)-\sin\left(\text{π}+\dfrac{\text{π}}{2}+x\right)\)
\(=\cos x+\sin x+\cos\left(\dfrac{1}{2}\text{π}+x\right)+\sin\left(\dfrac{1}{2}\text{π}+x\right)\)
\(=\cos x+\sin x-\sin x+\cos x=2\cos x\)
\(=\left(\sin100^0+\sin80^0\right)+\left(\cos16^0+\cos164^0\right)=1\)