Cho hs \(y=x^4-\left(3m-1\right)x^2+2m+1\).Tìm m để đồ thị hàm số có 3 điểm cực trị A, B, C cùng với điểm D(7;3) nội tiếp được một đường tròn.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét hàm số \(y=ax^4+bx^2+c\)
Ta có \(y'=4ax^3+2bx=2x\left(2ax^2+b\right)\)
\(y'=0\Leftrightarrow x=0\) hoặc \(2ax^2+b=0\left(1\right)\)
Đồ thị hàm số có 3 cực trị phân biệt khi và chỉ khi \(y'=0\) có 3 nghiệm phân biệt hay phương trình (1) có 2 nghiệm phân biệt khác 0 \(\Leftrightarrow ab< 0\) (*)
Với điều kiện (*) thì đồ thị có 3 điểm cực trị là :
\(A\left(0;c\right);B\left(-\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right);C\left(\sqrt{-\frac{b}{2a},}c-\frac{b^2}{4a}\right)\)
Ta có \(AB=AC=\sqrt{\frac{b^2-8ab}{16a^2}};BC=\sqrt{-\frac{2b}{a}}\) nên tam giác ABC vuông khi và chỉ khi vuông tại A.
Khi đó \(BC^2=2AB^2\Leftrightarrow b^3+8a=0\)
Do đó yêu cầu bài toán\(\Leftrightarrow\begin{cases}ab< 0\\b^3+8a=0\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\-8\left(m+1\right)^3+8=0\end{cases}\)\(\Leftrightarrow m=0\)
b) Ta có yêu cầu bài toán \(\Leftrightarrow\begin{cases}ab< 0\\OA=BC\end{cases}\)\(\Leftrightarrow\begin{cases}-2\left(m+1\right)< 0\\m^2-4\left(m+1\right)=0\end{cases}\)
\(\Leftrightarrow m=2\pm2\sqrt{2}\)
a. Hàm có 3 cực trị \(\Rightarrow m< 0\)
\(y'=8x^3+4mx=4x\left(2x^2+m\right)=0\Rightarrow\left[{}\begin{matrix}x=0;y=-\dfrac{3m}{2}\\x=-\sqrt{-\dfrac{m}{2}};y=-\dfrac{m^2+3m}{2}\\x=\sqrt{-\dfrac{m}{2}};y=-\dfrac{m^2+3m}{2}\end{matrix}\right.\)
Trong đó \(A\left(0;-\dfrac{3m}{2}\right)\) là cực đại và B, C là 2 cực tiêu
Do tam giác ABC luôn cân tại A \(\Rightarrow\) tâm I của đường tròn ngoại tiếp luôn nằm trên trung trực BC hay luôn nằm trên Oy
Mà tứ giác ABCO nội tiếp \(\Rightarrow OI=AI\Rightarrow I\) là trung điểm OA (do I, O, A thẳng hàng, cùng nằm trên Oy)
\(\Rightarrow I\left(0;-\dfrac{3m}{4}\right)\)
Mặt khác trung điểm BC cũng thuộc Oy và IB=IC (do I là tâm đường tròn ngoại tiếp)
\(\Rightarrow\) I trùng trung điểm BC
\(\Rightarrow-\dfrac{3m}{4}=-\dfrac{m^2+3m}{2}\) \(\Rightarrow m\)
b.
Từ câu a ta thấy khoảng cách giữa 2 cực đại là:
\(\left|x_B-x_C\right|=2\sqrt{-\dfrac{m}{2}}=5\Rightarrow m=-\dfrac{25}{2}\)
Hàm số đã cho có 3 điểm cực trị \(\Leftrightarrow y'=0\) có 3 nghiệm phân biệt
\(\Leftrightarrow x^3-2\left(3m+1\right)x=0\) có 3 nghiệm phân biệt \(\Leftrightarrow m>-\frac{1}{3}\) (1)
Khi đó 3 điểm cực trị của đồ thị là \(A\left(0;2m+2\right);B\left(-\sqrt{6m+2};-9m^2-4m+1\right);C\left(\sqrt{6m+2};-9m^2-4m+1\right)\)
Rõ ràng tam giác ABC cân tại A và trung tuyến kẻ từ A thuộc Oy. Do đó O là trọng tâm của tam giác ABC \(\Leftrightarrow y_A+2y_B=0\)
Hay \(2m+2+2\left(-9m^2-4m+1\right)=0\Leftrightarrow9m^2+3m-2=0\)
Suy ra \(m=-\frac{2}{3}\) hoặc \(m=\frac{1}{3}\)
Kết hợp với (1) suy ra giá trị của m là \(m=\frac{1}{3}\)
Chọn A
[Phương pháp trắc nghiệm]
Hàm số có 3 điểm cực trị khi m > 1 3
Áp dụng công thức:
Phương trình đường tròn ngoại tiếp ∆ A B C là:
Thay vào ta có phương trình:
Sử dụng chức năng SOLVE ,
tìm ra nghiệm duy nhất thỏa mãn là m = 3
ta tính \(y'=4x^3-2\left(3m-1\right)x=2x\left(2x^2-3x+1\right)\)
để hàm số có 3 cực trị thì pt y'=0 có 3 nghiệm phân biệt
ta có
\(y'=0\Leftrightarrow2x\left(2x^2-3m+1\right)=0\Rightarrow x=0;2x^2=3m-1\)
để pt có 3 nghiệm phân biệt thì 3m-1>0 suy ra m>1/3
x=0 ta có y=2m+1 suy ra \(A\left(0;2m+1\right)\) ;\(B\left(\sqrt{\frac{3m-1}{2}};-\frac{\left(3m-1\right)^2}{4}+2m+1\right)\); \(C\left(-\sqrt{\frac{3m-1}{2}};\frac{-\left(3m-1\right)^2}{4}+2m+1\right)\)
ta có \(\vec{AB}\left(\sqrt{\frac{3m-1}{2}};\frac{-\left(3m-1\right)^2}{4}\right)\); \(\vec{AC}=\left(-\sqrt{\frac{3m-1}{2}};-\frac{\left(3m-1\right)^2}{4}\right)\)
suy ra AC=AB suy ra tam giác ABC cân tại A
Gỉa sử A,B,C,D nội tiếp đường tròn suy ra tâm của đường tròn nằm trên trung tuyến BC
do tam giác ABC cân tại A suy ra trung tuyến BC cũng chính là đường cao của BC
ta có
\(\vec{BC}=\left(2\sqrt{\frac{3m-1}{2}};0\right)\)
phương trình đường cao qua A và vuông góc với BC nhận \(\vec{BC}\)làm vecto pháp tuyến có dạng
\(2\sqrt{\frac{3m-1}{2}}\left(x-0\right)+0\left(y-2m-1\right)=0\Rightarrow x=0\)(d)
Gọi I(0;a) thuộc (d) là tâm đường tròn mà A,B,C,D nội tiếp
suy ra ta có hệ pt
\(\begin{cases}IA=IB\\IB=IC\\IC=ID\end{cases}\)
giải ra ta tim đc mKết quả là j ạ