Trong hệ trục Oxy ,cho hai đường thẳng a : x-y-4=0 và b: 2x-y-2=0. Tìm tọa độ điểm N thuộc đường thẳng b sao cho ON cắt đường thẳng a tại điểm M thỏa mãn OM.ON=8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Đường tròn (C) có tâm K(-1;2) và bán kính R = 3
Vậy phương trình đường thẳng D là
M thuộc d nên: \(a-2b-2=0\Rightarrow2b=a-2\)
\(\left\{{}\begin{matrix}\overrightarrow{MA}=\left(-a;1-b\right)\\\overrightarrow{MB}=\left(3-a;4-b\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{MA}+\overrightarrow{MB}=\left(3-2a;5-2b\right)=\left(3-2a;9-2a\right)\)
Đặt \(T=\left|\overrightarrow{MA}+\overrightarrow{MB}\right|=\sqrt{\left(3-2a\right)^2+\left(9-2a\right)^2}=\sqrt{8a^2-48a+90}=\sqrt{8\left(a-3\right)^2+18}\ge\sqrt{18}\)
Dấu "=" xảy ra khi \(a-3=0\Leftrightarrow a=3\Rightarrow b=\dfrac{1}{2}\)
N(a, 2a-2); M(b, b-4). giải hpt sau
\(\begin{cases}\\\overrightarrow{ON}=k.\overrightarrow{OM}\end{cases}OM^2.ON^2=64\)
dùng pp thế đc 1 phương trình bậc 4 theo 2 hoặc b