BĐT Vacs: Với a, b, c > 0 và abc = 1. Có:\(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}+\frac{1}{c^2+c+1}\ge1\)Đặt \(a\rightarrow a^k,b\rightarrow b^k,c\rightarrow c^k\) thì abc = 1. Có: \(\frac{1}{a^{2k}+a^k+1}+\frac{1}{b^{2k}+b^k+1}+\frac{1}{c^{2k}+c^k+1}\ge1\) (*)BĐT (*) sẽ giúp ta giải được khá nhiều bài toán với điều kiện abc = 1.Ví dụ 1: \(\frac{1}{\left(1+2a\right)^2}+\frac{1}{\left(1+2b\right)^2}+\frac{1}{\left(1+2c\right)^2}\ge\frac{1}{3}\) với abc...
Đọc tiếp
BĐT Vacs: Với a, b, c > 0 và abc = 1. Có:\(\frac{1}{a^2+a+1}+\frac{1}{b^2+b+1}+\frac{1}{c^2+c+1}\ge1\)
Đặt \(a\rightarrow a^k,b\rightarrow b^k,c\rightarrow c^k\) thì abc = 1. Có: \(\frac{1}{a^{2k}+a^k+1}+\frac{1}{b^{2k}+b^k+1}+\frac{1}{c^{2k}+c^k+1}\ge1\) (*)
BĐT (*) sẽ giúp ta giải được khá nhiều bài toán với điều kiện abc = 1.
Ví dụ 1: \(\frac{1}{\left(1+2a\right)^2}+\frac{1}{\left(1+2b\right)^2}+\frac{1}{\left(1+2c\right)^2}\ge\frac{1}{3}\) với abc =1,a>0,b>0,c>0
Phân tích: Ta chọn k: \(\frac{1}{\left(1+2a\right)^2}=\frac{1}{4a^2+4a+1}\ge\frac{1}{3\left(a^{2k}+a^k+1\right)}\)
\(\Leftrightarrow3a^{2k}+3a^k+2\ge4a^2+4a\)
Đạo hàm và cho a = 1 thì được \(k=\frac{4}{3}\)
Vậy ta chứng minh: \(\frac{1}{\left(1+2a\right)^2}\ge\frac{1}{3\left(a^{\frac{8}{3}}+a^{\frac{4}{3}}+1\right)}\) (1)
Đặt \(a\rightarrow x^3\) cần chứng minh: \(\frac{1}{\left(1+2x^3\right)^2}\ge\frac{1}{3\left(x^8+x^4+1\right)}\) (dễ dàng)
Từ đó thiết lập 2 BĐT tương tự (1), cộng theo vế, dùng (*) với k = 4/3 ta được đpcm.
Lời giải xin để cho mọi người.
PS: Bài trên có một cách dùng UCT khá khó ở https://diendantoanhoc.net/topic/90839-phương-pháp-hệ-số-bất-định-uct/?p=394487
Ví dụ 2: Cho x,y,z > 0 và xyz =1 .Chứng minh: \(\frac{x^2}{\left(1+x\right)^2}+\frac{y^2}{\left(1+y\right)^2}+\frac{z^2}{\left(1+z\right)^2}\ge\frac{3}{4}\)
Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\rightarrow abc=1\)
Ta có: \(\frac{x^2}{\left(1+x\right)^2}=\frac{1}{\left(a+1\right)^2}\ge\frac{3}{4\left(a^2+a+1\right)}\)
Giả sử đây là phản ứng bậc 1.Pt động học \(kt=\frac{1}{a-x}-\frac{1}{a}\)
\(\Rightarrow k=\left(\frac{1}{t}\right)\left(\frac{1}{a-x}-\frac{1}{x}\right)\)
\(\Rightarrow k1=\frac{10^{-17}}{1,78}-\frac{10^{-17}}{16}=4,999.10^{-18}\left(s^{-1}\right)\)
\(k2=\frac{1}{4}\left(\frac{10^{-17}}{0,5}-\frac{10^{-17}}{16}\right)=4,84.10^{-18}\)
\(k1\approx k2\)
\(\Rightarrow\)đây là phản ứng bậc 1
k trung bình=4,8.10^(-18) (s^-1)
cảm ơn c nha ^^