Cho tam giác vuông ABC, đường cao AH. Tính tỉ số lượng giác của góc ABH và HAB?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sinABH=\frac{AH}{AB}\) \(cosABH=\frac{BH}{AB}\)
\(tanABH=\frac{AH}{BH}\) \(cotABH=\frac{BH}{AH}\)
\(sinHAB=\frac{BH}{AB}\) \(cosHAB=\frac{AH}{AB}\)
\(tanHAB=\frac{BH}{AH}\) \(cotHAB=\frac{AH}{BH}\)
\(\sin ABH=\frac{AH}{AB}\) \(\cos ABH=\frac{BH}{AB}\)
\(\tan ABH=\frac{AH}{BH}\) \(\cot ABH=\frac{BH}{AH}\)
\(\sin HAB=\frac{BH}{AB}\) \(\cos HAB=\frac{AH}{AB}\)
\(\tan HAB=\frac{BH}{AH}\) \(\cot HAB=\frac{AH}{BH}\)
Sorry ko vẽ đc hình
Code : Breacker
Vì \(\widehat{B}=120^0\) nên đường cao AH ứng với cạnh BC sẽ nằm ngoài tam giác ABC
Ta có: \(\widehat{ABH}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\Leftrightarrow\widehat{ABH}+120^0=180^0\)
hay \(\widehat{ABH}=60^0\)
Xét ΔABH vuông tại H có
\(\widehat{ABH}=60^0\)(cmt)
nên \(\sin\widehat{ABH}=\dfrac{\sqrt{3}}{2}\); \(\cos\widehat{ABH}=\dfrac{1}{2}\); \(\tan\widehat{ABH}=\sqrt{3}\); \(\cot\widehat{ABH}=\dfrac{\sqrt{3}}{3}\)
Xét ΔABH vuông tại H có
\(\widehat{BAH}=30^0\)
nên \(\sin\widehat{BAH}=\dfrac{1}{2}\); \(\cos\widehat{BAH}=\dfrac{\sqrt{3}}{2}\); \(\tan\widehat{BAH}=\dfrac{\sqrt{3}}{3}\); \(\cot\widehat{BAH}=\sqrt{3}\)
Ta có: \(\widehat{HCA}+\widehat{ABH}=90^0\)(ΔABC vuông tại A)
\(\widehat{HAB}+\widehat{ABH}=90^0\)(ΔABH vuông tại H)
Do đó: \(\widehat{HCA}=\widehat{HAB}\)
mà \(\widehat{KCA}=\dfrac{\widehat{HCA}}{2}\)(CK là tia phân giác của \(\widehat{HCA}\))
và \(\widehat{KAB}=\dfrac{\widehat{HAB}}{2}\)(AK là tia phân giác của \(\widehat{HAB}\))
nên \(\widehat{KCA}=\widehat{KAB}\)(đpcm)
a) Ta có: BD là tia phân giác của \(\widehat{CBA}\)(gt)
nên \(\widehat{CBD}=\widehat{ABD}=\dfrac{120^0}{2}=60^0\)
Từ A kẻ đường thẳng song song với BD cắt BC tại E
Ta có: BD//AE(gt)
nên \(\widehat{CBD}=\widehat{BEA}\)(hai góc đồng vị) và \(\widehat{ABD}=\widehat{BAE}\)(hai góc so le trong)
mà \(\widehat{CBD}=\widehat{ABD}=60^0\)(cmt)
nên \(\widehat{BEA}=\widehat{BAE}=60^0\)
Xét ΔBEA có \(\widehat{BEA}=\widehat{BAE}=60^0\)(cmt)
nên ΔBEA đều(Dấu hiệu nhận biết tam giác đều)
\(\Leftrightarrow BA=BE=EA=6\left(cm\right)\)
\(\Leftrightarrow CE=CB+BE=12+6=18\left(cm\right)\)
Xét ΔCEA có BD//AE(gt)
nên \(\dfrac{BD}{AE}=\dfrac{CB}{CE}\)(Hệ quả của Định lí Ta lét)
\(\Leftrightarrow\dfrac{BD}{6}=\dfrac{12}{18}=\dfrac{2}{3}\)
hay BD=4(cm)
b) Ta có: M là trung điểm của BC(gt)
nên \(MB=MC=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Xét ΔBAM có BA=BM(=6cm)
nên ΔBAM cân tại B(Định nghĩa tam giác cân)
mà BD là đường phân giác ứng với cạnh AM(gt)
nên BD là đường cao ứng với cạnh AM(Định lí tam giác cân)
hay BD⊥AM(đpcm)
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=9^2+12^2=225\)
hay BC=15(cm)
Vậy: BC=15cm
\(sinABH=\frac{AH}{AB}\)
\(cosABH=\frac{BH}{AB}\)
\(tanABH=\frac{AH}{BH}\)
\(cotABH=\frac{BH}{AH}\)
\(sinHAB=\frac{BH}{AB}\)
\(cosHAB=\frac{AH}{AB}\)
\(tanHAB=\frac{BH}{AH}\)
\(cosHAB=\frac{AH}{BH}\)